COMBINATORIAL GENERATION VIA PERMUTATION LANGUAGES.
VII. SUPERSOLVABLE HYPERPLANE ARRANGEMENTS
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ABSTRACT. For an arrangement H of hyperplanes in R"™ through the origin, a region is a
connected subset of R™ \ H. The graph of regions G(H) has a vertex for every region, and an
edge between any two vertices whose corresponding regions are separated by a single hyperplane
from H. We aim to compute a Hamiltonian path or cycle in the graph G(H), i.e., a path or
cycle that visits every vertex (=region) exactly once. Our first main result is that if H is a
supersolvable arrangement, then the graph of regions G(H) has a Hamiltonian cycle. More
generally, we consider quotients of lattice congruences of the poset of regions P(#, Ro), obtained
by orienting the graph G(H) away from a particular base region Rg. Our second main result is
that if H is supersolvable and Ry is a canonical base region, then for any lattice congruence =
on P(H,Roy) =: L, the cover graph of the quotient lattice L/= has a Hamiltonian path.

These paths and cycles are constructed by a generalization of the well-known Steinhaus-
Johnson-Trotter algorithm for listing permutations. This algorithm is a classical instance of
a combinatorial Gray code, i.e., an algorithm for generating a set of combinatorial objects by
applying a small change in each step. When applying our two main results to well-known
supersolvable arrangements, such as the coordinate arrangement, and the braid arrangement
and its subarrangements, we recover a number of known Gray code algorithms for listing various
combinatorial objects, such as binary strings, binary trees, triangulations, rectangulations,
acyclic orientations of graphs, congruence classes of quotients of the weak order on permutations,
and of acyclic orientation lattices. These were obtained earlier from the framework of zigzag
languages of permutations proposed by Hartung, Hoang, Miitze, and Williams ( Trans. Amer.
Math. Soc., 2022). When applying our main results to the type B Coxeter arrangement and its
subarrangements, we obtain a number of new Gray code algorithms for listing (pattern-avoiding)
signed permutations, symmetric triangulations, acyclic orientations of certain signed graphs,
and in general for combinatorial families of Coxeter type B, which generalizes the theory of
zigzag languages to signed permutations. Our approach also yields new Hamiltonicity results for
large classes of polytopes, in particular signed graphic zonotopes and the type B quotientopes
of Padrol, Pilaud, and Ritter (Int. Math. Res. Not., 2023).

1. INTRODUCTION

1.1. Combinatorial generation. Given a family of combinatorial objects, such as permutations,
binary strings, binary trees, partitions etc., the combinatorial generation problem asks to
efficiently list all objects from the family, one after the other and each object exactly once.
This algorithmic problem is closely related to the problems of counting, random sampling, and
optimization. It is covered in depth in Knuth’s seminal book ‘The Art of Computer Programming
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2 COMBINATORIAL GENERATION VIA PERMUTATION LANGUAGES

Vol. 4A’ [Knull]. In order for the generation algorithm to be efficient, it is often helpful to list
the objects in a way such that any two consecutive objects differ only by a small, elementary
change, sometimes called a flip. An example for this is the classical binary reflected Gray code
for binary strings, in which all binary strings of a fixed length n are listed in such a way that any
two consecutive strings differ only in a single bit [Gra53]. The term combinatorial Gray code is
used more broadly for any listing of combinatorial objects subject to an appropriately defined flip
operation between successive objects [Sav97, Miit23]. The flip operation also gives rise to a flip
graph on the set of objects, in which two objects are adjacent whenever they differ by a single
flip. The problem of finding a combinatorial Gray code amounts to finding a Hamiltonian path
in the corresponding flip graph, i.e., a path that visits every vertex exactly once. A Gray code is
cyclic if the first and last object also differ in a flip, and this corresponds to a Hamiltonian cycle
in the flip graph.

1.2. The Steinhaus-Johnson-Trotter algorithm for permutations. An early, and now
classical example of a cyclic Gray code is the so-called Steinhaus-Johnson-Trotter algorithm [Ste64,
Joh63, Tro62] for listing all permutations of [n] := {1,...,n} by adjacent transpositions, i.e.,
any two consecutive permutations differ by an exchange of two entries at adjacent positions.
The method is also known as ‘plain changes’ and has been used since a long time by bell ringers
(see [Whi96]). An easy way to describe this listing of permutations is by the following greedy
algorithm due to Williams [Will3]: Start with the identity permutation, and then repeatedly
apply an adjacent transposition to the last permutation in the list that involves the largest
possible value so as to create a new permutation, which then gets added to the list. Equivalently,
the construction can be described by induction on n. Given the listing L,,_; for permutations
of length n — 1, the listing L, for permutations of length n is obtained by replacing every
permutation 7 in L,_; by n permutations of length n obtained by inserting the largest value n in
all possible positions in 7. Specifically, the value n moves alternatingly from right to left and from
left to right in the successive permutations of L,_1, in a zigzag pattern; see Figure 1 (a). This
algorithm can be implemented looplessly, i.e., so that each permutation is generated in constant
time, while using only linear memory to store the current permutation and a few auxiliary arrays.
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FIGURE 1. (a) Steinhaus-Johnson-Trotter listings of permutations for n =1,...,4,

with the largest element n highlighted; (b) visualization of the listing for n = 4 as a
Hamiltonian cycle in the permutahedron.
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The corresponding flip graph for this problem, namely the Cayley graph of the symmetric
group generated by adjacent transpositions, is the well-known permutahedron, and the Steinhaus-
Johnson-Trotter algorithm yields a Hamiltonian cycle in this graph, i.e., the first and last
permutation also differ in an adjacent transposition; see Figure 1 (b).

1.3. Zigzag languages of permutations. In a recent series of papers, Miitze and coauthors
showed that the simple greedy algorithm to generate the Steinhaus-Johnson-Trotter listing
can be generalized to efficiently generate many other families of combinatorial objects that are
in bijection to certain subsets of permutations. Specifically, a zigzag language is a subset of
permutations of [n] that satisfies a certain closure property (see [HHMW?22] for details), and
via those bijections the flip operations on the permutations from the zigzag language translate
to natural flip operations on the combinatorial objects. The algorithm to generate a zigzag
language presented in [HHMW22] in each step greedily moves the largest possible value in the
permutation over a number of neighboring smaller entries, so as to create a new permutation
in the zigzag language, which then gets added to the list. The zigzagging framework applies
to generate pattern-avoiding permutations [HHMW22], lattice quotients of the weak order on
permutations [HM21], pattern-avoiding rectangulations [MM23], elimination trees of chordal
graphs [CMM25], acyclic orientations of chordal graphs and hypergraphs and quotients of acyclic
reorientation lattices [CHM™23], and pattern-avoiding binary trees [GMN24].

The main contribution of this paper is to treat many of the aforementioned results under a
common umbrella, namely that of hyperplane arrangements. This yields an abstract unifying
view, yet provides simpler and shorter proofs, and at the same time yields more general results,
including new Hamiltonicity results for interesting flip graphs and polytopes, and concrete new
Gray code algorithms for a variety of combinatorial objects. The following sections provide three
complementary views on the families of objects we aim to generate. Much of the terminology
and definitions are spelled out in more detail in Section 2.

1.4. Hyperplane arrangements and graph of regions. The geometric perspective that we
will use is that of hyperplane arrangements, defined as a nonempty finite set of real hyperplanes
through the origin. Given such an arrangement H in R™, the set R = R(H) :=R"\ H is a
collection of open convex sets called regions. The graph of regions G(H) has R(H) as its vertex
set, and an edge between any two vertices corresponding to regions that are separated by exactly
one hyperplane from H; see Figure 2.
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FIGURE 2. (a) The coordinate arrangement for n = 3 with regions labeled by binary
strings; (b) its stereographic projection from the south pole with the normal vectors
for each hyperplane; (c¢) its graph of regions, realized as a polytope, namely the
3-dimensional hypercube.
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Our goal is to construct a Hamiltonian path or cycle in G(H), i.e., we aim to visit all
regions, one after the other and each region exactly once. This problem generalizes a number of
combinatorial generation problems and their corresponding flip graphs:

e The coordinate arrangement is the set of hyperplanes H in R™ whose normal vectors are the
canonical base vectors {€; | i € [n]}. The regions of this arrangement # are in bijection with
binary strings of length n, and in the graph of regions G(H), any two regions differing in a
single bit are joined by an edge, i.e., G(H) is the graph of the n-dimensional hypercube; see
Figure 2.

e The braid arrangement, also known as the type A Coxeter arrangement, is the set of
hyperplanes H in R™ defined by the normal vectors {e; — €5 | 1 <4 < j < n}. The regions of
this arrangement H are in bijection with permutations of [n], and in G(H), any two regions
differing in an adjacent transposition are joined by an edge, i.e., G(H) is the graph of the
(n — 1)-dimensional permutahedron; see Figure 3.

e The type B Coxeter arrangement is the set of hyperplanes H in R" defined by the normal
vectors {€; £e; |1 <i<j<n}U{€;|iéec [n]}. The regions of this arrangement / are in
bijection with signed permutations of [n]. A signed permutation is a permutation of [n] in
which every entry has a positive or negative sign. In G(#), any two regions differing either
in an adjacent transposition or a sign change of the first entry are joined by an edge, i.e.,
G(H) is the graph of the n-dimensional B-permutahedron; see Figure 4.

e Given a simple graph F' = ([n], E'), the graphic arrangement of F is the subarrangement of the
braid arrangement consisting only of the hyperplanes with normal vectors {e; —¢; | {4, j} € E}.
The regions of this arrangement H are in bijection with acyclic orientations of F', and in
in G(H), any two regions differing in reversing a single arc in the acyclic orientation of F' are
joined by an edge.

An interesting special case of this problem is when the arrangement is that of a reflection
group. In that case, it was shown by Conway, Sloane, and Wilks [CSW89] that the graph of
regions is always Hamiltonian, hence that a Gray code always exists.

We conclude this section with some easy observations about the graph G(H). First of all, the
number of regions |R(H)| is always even, i.e., G(H) has an even number of vertices. This follows
from the observation that the opposition map x — —x on R" induces an involution without
fixed points on the set of regions R(H). Furthermore, the graph G(H) is bipartite, which can
be shown by induction on the number of hyperplanes in H. If the number of hyperplanes in
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FIGURE 3. (a) The braid arrangement (=type A Coxeter arrangement) for n = 4
projected to three dimensions with the regions labeled by permutations; (b) its
stereographic projection; (c) its graph of regions, realized as a polytope, namely the
3-dimensional permutahedron of type A.
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FIGURE 4. (a) The type B Coxeter arrangement for n = 3 with the regions labeled
by signed permutations (barred entries have a negative sign); (b) its stereographic
projection; (c) its graph of regions, realized as a polytope, namely the 3-dimensional

B-permutahedron.
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FIGURE 5. Stereographic projections of two hyperplane arrangements H in R? for
which G(H) does not admit a Hamiltonian path (nor cycle): (a) H consists of 4
hyperplanes and the two partition classes of G(#) have sizes 6 (black vertices) and 8
(white vertices); (b) #H consists of 7 hyperplanes and both partition classes of G(H)

have size 22.

the arrangement H is odd, then the two partition classes of G(H) have the same size (as the
opposition map switches classes in this case). On the other hand, if the number of hyperplanes
is even then the two partition classes of G(H) can have different sizes, which rules out the
existence of a Hamiltonian cycle, and if the size difference is more than 1 then it also rules out
the existence of a Hamiltonian path; see Figure 5 (a). Even if the partition classes are balanced,
a Hamiltonian path is not guaranteed; see Figure 5 (b).

1.5. Posets of regions and lattice congruences. By choosing one region Ry € R(H) as
base region, one can orient the edges of the graph of regions G(H) away from Ry. Because
G(H) is bipartite, it becomes the cover graph of a graded poset P(H, Ry), called the poset of
regions. For example, if H is the aforementioned type A Coxeter arrangement, and Ry is the
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FIGURE 6. (a) The weak order of type A for n = 4, obtained by orienting the
permutahedron shown in Figure 3 (¢) away from the base region Ry = 1234. The
bold lines connect pairs of permutations that are in the same equivalence class of
the sylvester congruence. It is defined by the rewriting rule _b ca_ = b _ac__
where a < b < ¢, which means that whenever we see a subsequence of three entries
b, ¢, a with a < b < ¢ in a permutation, where ¢ and a are at consecutive positions,
then the permutation obtained by transposing ¢ and a is in the same equivalence
class. This corresponds to destroying one occurrence of the pattern 231. Hence the
231-avoiding permutations are representatives of the equivalence classes and sit at
the bottom of each class. (b) Quotient lattice for the congruence on the left, namely
the Tamari lattice with n-vertex binary trees (blue) or triangulations of a convex
(n + 2)-gon (red) corresponding to the 231-avoiding permutations.

identity permutation, then P(#H, Ry) is the weak order of type A, i.e., permutations ordered by
their inversion sets; see Figure 6 (a). Similarly, for the type B Coxeter arrangement and Ry the
identity permutation, P(#, Ry) is the weak order of type B, i.e., signed permutations ordered
by their inversion sets; see Figure 7 (a).

In these two cases, P(H,Ry) has the additional structure of a lattice, i.e., for any two
elements X,Y € R(H), there is a unique largest element below X and Y, called the meet X Y,
and a unique smallest element above X and Y, called the join X VY. If we have a lattice on a
ground set P, a lattice congruence is an equivalence relation = on P that is compatible with the
meet and join operations, i.e., we require that if X = X’ and Y =Y’ then X AY = X' A Y
and X VY = X’ VY’. The quotient lattice is the lattice on P/=, i.e., on the equivalence classes
on P formed by =, with the order relation inherited from P. Consequently, the cover graph
of P/= is obtained from the cover graph of P by contracting the vertices in each equivalence
class to a single vertex.

For the weak order of type A, there is a large number of distinct lattice congruences, and for
several of them, the corresponding congruence classes encode interesting combinatorial objects
(under suitable bijections), and the cover graphs of the resulting quotient lattices are interesting
flip graphs. For example, the well-known Tamari lattice is the quotient of the weak order
of type A under the so-called sylvester congruence [HNT05, MHPS12]. Its elements can be
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FIGURE 7. (a) The weak order of type B for n = 3, obtained by orienting the B-
permutahedron shown in Figure 4 (c) away from the base region Ry = 123. The
bold lines connect pairs of signed permutations that are in the same equivalence

class of the congruence defined by the rewriting rule _b_ca_ = _b_ac__ where
a < b < cand b > 0, which has to be applied to the full notation of each signed
permutation x = (z1,...,2y), i.e., to the string (Tn,Tp_1,...,T1,T1,22,...,Tn).

The pattern-avoiding signed permutations sit at the bottom of each equivalence class.
(b) Quotient lattice, namely the type B Tamari lattice for the congruence on the left,
with the point-symmetric triangulations of a convex (2n+2)-gon corresponding to the
pattern-avoiding signed permutations (the correspondence is given by Theorem 29).

identified with 231-avoiding permutations, and hence they are in bijection with binary trees
and triangulations of a convex polygon, all of which are Catalan families; see Figure 6. In the
cover graph of the quotient lattice, edges are precisely between binary trees that differ in a tree
rotation, i.e., we obtain the rotation graph of binary trees [STT88, Poul4]. In the corresponding
triangulations, a tree rotation translates to a flip that removes one edge between two triangles
and replaces it by the other diagonal in the resulting empty quadrilateral.

Different families of rectangulations can also be obtained as quotients of the weak order of
type A [Girl2, LR12, Real2, CSS18], and the flip operations are tree rotations on the dual twin
binary trees. The Boolean lattice, with the hypercube as its cover graph, is also a lattice quotient
of the weak order of type A. In fact, all lattice congruences of the weak order form a lattice
themselves, with the order relation being refinement of the equivalence classes.

If H is the graphic arrangement of a graph F' and Ry a fixed acyclic orientation of F, then
P(H, Ry) is the reorientation poset of all acyclic orientations of F' with respect to the reference
orientation Ry. Pilaud [Pil24] gave a necessary and sufficient condition on Ry for this poset to
be a lattice, and he also described the corresponding lattice congruences and quotients.

Reading [Rea06] defined a type B Tamari lattice via a lattice congruence of the weak order
of type B. In Figure 7, we show the quotient lattice with the corresponding combinatorial
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objects, namely point-symmetric triangulations of a convex polygon. Edges in the cover graph
are between triangulations that differ in a flip of one or two symmetric edges.

1.6. Polytopes. Finally, the aforementioned flip graphs all arise as the skeletons of well-known
combinatorial polytopes. The zonotope of an arrangement of hyperplanes H is the polytope
obtained as the Minkowski sum of line segments in the directions of the normal vectors of
the hyperplanes in H. Conversely, the normal fan of the zonotope is the fan defined by the
arrangement 7.

The vertices of the zonotope are in bijection with the regions R(H) of the arrangement, and
its skeleton is the graph of regions G(#). For example, the hypercube is the zonotope of the
coordinate arrangement; see Figure 2. Similarly, the permutahedron is the zonotope of the braid
arrangement (see Figure 3), and the B-permutahedron is the zonotope of the type B Coxeter
arrangement (see Figure 4). The graphic zonotope is the zonotope of the graphic arrangement
of a graph.

4312
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1234
2134
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FIGURE 8. (a) Quotient fan obtained from the type A Coxeter fan in Figure 3 (a)
under the sylvester congruence of Figure 6, and (b) its stereographic projection. It
is the normal fan of the associahedron shown in (c), obtained by removing certain
hyperplanes that bound the permutahedron inside.

FIGURE 9. (a) Quotient fan obtained from the type B Coxeter fan in Figure 4 (a)
under the congruence of Figure 7, and (b) its stereographic projection. It is the
normal fan of the B-associahedron shown in (c), obtained by removing certain
hyperplanes that bound the B-permutahedron inside.
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A lattice congruence of type A acts on the normal fan of the permutahedron by gluing together
regions that belong to the same equivalence class of the congruence. Pilaud and Santos [PS19]
showed that the resulting quotient fan is the normal fan of a polytope they called quotientope; see
Figure 8. Put differently, their result shows that the cover graph of any lattice quotient of the weak
order on permutations can be realized geometrically as the skeleton of a polytope. Quotientopes
thus generalize permutahedra, associahedra [Lod04], rectangulotopes [CP25], hypercubes etc.
Padrol, Pilaud, and Ritter [PPR23] later gave a construction of quotientopes via Minkowski
sums. Notably, their approach also works for all lattice congruences on the type B Coxeter
arrangement, i.e., we obtain type B quotientopes, including the B-associahedron [Sim03]; see
Figure 9. We refer to the recent expository paper of Pilaud, Santos, and Ziegler [PSZ23] for
context and references about associahedra and their generalizations.

Table 1 gives an overview of the various structures discussed here and their connections.

TABLE 1. Correspondence between combinatorial objects encoded by different
hyperplane arrangements and their lattice congruences, posets and polytopes.

Arrangement Combinatorial objects Poset Polytope

coordinate binary strings Boolean lattice hypercube

type A permutations weak order of type A permutahedron of type A
binary trees, triangulations Tamari lattice associahedron
(diagonal/generic) rectangulations lattice of rectangulations rectangulotopes [CP25]
permutrees rotation lattice permutreehedra [PP18]

graphic acyclic orientations of graphs acyclic reorientation order graphic zonotope

type B signed permutations weak order of type B permutahedron of type B
symmetric triangulations Tamari lattice of type B associahedron of type B

acyclic orientations of signed graphs acyclic reorientation order of type B  signed graphic zonotope

1.7. Our results. The zigzagging procedure of the Steinhaus-Johnson-Trotter algorithm and
its generalizations [HHMW22] exploit a well-studied property of hyperplane arrangements called
supersolvability. This term was first used in the context of group theory, as a property of the
lattice of subgroups of a group. Stanley [Sta72] later gave a lattice-theoretic definition, which
was then used to qualify hyperplane arrangements. A convenient definition, in our context, is the
following: A hyperplane arrangement H is supersolvable if the set H can be partitioned into two
nonempty subsets Hg and H1, where Hj is a supersolvable arrangement of lower rank, and for any
pair of distinct hyperplanes in A, their intersection is contained in a hyperplane of Hy [BEZ90].
(We refer to Section 2.8 for complete definitions.) When a supersolvable arrangement # is split
into the two subarrangements Hgy and Hi, then the regions of the arrangement Hg can be seen
as equivalence classes of the regions of H, and the regions in each such equivalence class are
linearly ordered, i.e., they form a path in the graph of regions G(#). The zigzagging method
alternatingly moves back and forth along those paths, following a Hamiltonian cycle in the graph
of regions G(Hy) of the lower-rank arrangement Hy that is built inductively; see Figure 10. As
the number of regions |R(Ho)| is always even, the last visited region is adjacent to the starting
region, i.e., we obtain a Hamiltonian cycle in G(H).
This leads to our first result.!

Theorem 1. Let ‘H be a supersolvable hyperplane arrangement of rank n > 2. Then the graph
of regions G(H) has a Hamiltonian cycle of even length.

LA fter submitting this paper, we learned that Korber, Schnieders, Stricker, and Walizadeh [KSSW25] found an
independent proof of Theorem 1.
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Ho

Ha

(a)

FiGURE 10. Illustration of the supersolvable partition H = Hg U H1 of the Coxeter
arrangements of (a) type A and (b) type B from Figures 3 and 4, respectively (as
stereographic projections). The resulting Hamiltonian cycles in the graph of regions
obtained from the zigzagging procedure are shown in black, and they correspond to
the listings given in Figures 1 and 11, respectively.

Bjorner, Edelman and Ziegler [BEZ90] showed that the regions of a supersolvable arrange-
ment H can always be ordered into a lattice, for a suitable choice of base region Ry € R(H).
Our second main result is that the cover graph of the quotient of any such lattice always has a
Hamiltonian path, which can be found by the zigzagging procedure.

Theorem 2. Let H be a supersolvable hyperplane arrangement, and let L := P(H, Ry) be its
lattice of regions for a canonical base region Ry. Then for any lattice congruence = on L, the
cover graph of L/= has a Hamiltonian path.

(We refer to Section 2.10 for the definition of canonical base region.) The Hamiltonian paths
and cycles in those results can be computed by the following simple greedy algorithm based on
the supersolvable partition H = Ho U H1: Start at a canonical base region, and then repeatedly
apply the following rule where to move from the currently visited region: If possible, traverse a
hyperplane from H; that leads to a previously unvisited region, otherwise recursively select a
hyperplane to traverse from Hg according to this rule.

1.8. Applications of our results. With the two results above, we recover a number of previously
known Hamiltonicity results and Gray code algorithms, and we provide several new ones.

1.8.1. The coordinate arrangement and binary strings. The coordinate arrangement H with
normal vectors {e; | i € [n]} is clearly supersolvable. Indeed, for the required partition H =
Ho U H, we can take H; as the singleton hyperplane with normal vector e,. The resulting
Hamiltonian cycle in the hypercube is the well-known binary reflected Gray code; see Figure 2.
It has the following greedy description ([Will3]): Start with the all-0 string of length n, and
then repeatedly flip the rightmost bit in the last string so as to create a new binary string.

1.8.2. The type A Cozxeter arrangement and permutations. Recall that the braid arrangement,
or type A Coxeter arrangement, is defined by the normal vectors {¢; — € | 1 <i < j < n}. The
supersolvability of this arrangement H is witnessed by letting H; be the set of hyperplanes with
normal vectors whose nth component is nonzero. Indeed, consider two of them, with normal
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TABLE 2. The classical binary reflected Gray code for n =1,...,4.
n
1 0,1
2 00, 01, 11, 10
3 000, 001, 011, 010, 110, 111, 101, 100

4 0000, 0001, 0011, 0010, 0110, 0111, 0101, 0100,
1100, 1101, 1111, 1110, 1010, 1011, 1001, 1000

vectors e; — e, and e; — ey, respectively, with ¢ < j < n. Then their intersection is a flat of
codimension 2 lying in the hyperplane with normal vector e; —e;, which belongs to Ho. Theorem 1
yields the aforementioned Steinhaus-Johnson-Trotter listing of permutations (recall Section 1.2).

1.8.3. The type B Cozeter arrangement and signed permutations. Recall that the type B Coxeter
arrangement is defined by the hyperplanes with normal vectors {e; £e; |1 <i < j<n}U({e |
i € [n]}. Similarly to before, the supersolvability of this arrangement # is witnessed by letting
H1 be the hyperplanes with normal vectors whose nth component is nonzero.

As mentioned before, the regions of H are in bijection with signed permutations, i.e., permuta-
tions of [n] in which every entry has a positive or negative sign. Adjacencies in the graph G(H)
are adjacent transpositions or a sign change of the first entry. The Gray code for signed permu-
tations obtained from Theorem 1 is shown in Figure 4, and it is cyclic for all n. Note that this
Gray code is different from the Gray code given by Conway, Sloane, and Wilks [CSW89] and
also from the one given by Korsh, LaFollette, and Lipschutz [KLL11].

For any positively signed element i € [n] we write 7 := —i for its negatively signed counterpart.
Note that i = i. We define [n] := {1,2,...,n}, and we denote a signed permutation as a string
m = (ai,...,a,) such that a; € [m]U[n] for i =1,...,n and {|a1],...,|an|} = [n]. It is useful in
this context to introduce the so-called full notation of a signed permutation = = (aq,...,a,),
which is the string 7 := (@, @n—1,...,01,0a1,02,...,ay,) of length 2n. Note that an adjacent
transposition in 7 corresponds to a symmetric pair of adjacent transpositions in 7. Furthermore,
a sign change of the first entry of m corresponds to an adjacent transposition of the middle two

n y/il?’ 1231\321?3\7 _
231 575132
1 123 218
) 12,21,?1,1%:_%2,21121,1_2 /' ??\1123312213\ \>m
3 123,132,312,312,132,123, 31 332 8V g g Ny
213,231,321, 321,231,213, i N\ 31*
213,231,321, 321,231,213, 2L 931 3l 81 g5 3
123,132,312, 312,132, 123, 312231 | / |
123,132,312, 312, 132, 123, N 91550518 531 155 )
913,231, 321, 321, 231, 213, 13T P g
213,231, 321, 321, 231, 213, 123N s —o13 213

123,132,312, 312,132,123

(a) (b)

FIGURE 11. (a) Our new cyclic Gray code for signed permutations for n = 1,2, 3;
(b) visualization of the listing for n = 3 as a Hamiltonian cycle on the B-
permutahedron.
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entries of 7. Therefore, our Gray code for signed permutations can be described greedily, using
the full notation, as follows: Start with the identity permutation (m,n —1,...,1,1,2,...,n), and
then repeatedly apply an adjacent transposition® to the last permutation in the list that involves
the largest possible value so as to create a new permutation. This algorithm can be implemented
looplessly, i.e., in time O(1) per generated signed permutation, while using only O(n) memory.
We prepared an implementation in C++, available for download and experimentation on the
Combinatorial Object Server website [cos].

1.8.4. Type A subarrangements and acyclic orientations of graphs. Recall from Section 1.4 that
the graphic arrangement H of a graph F' = ([n], F') is a subarrangement of the braid arrangement,
obtained by retaining only the hyperplanes corresponding to the edges of F', with normal vectors
{ei —¢€j | {i,j} € E}. It is well-known and not hard to see that the regions of A are in bijection
with acyclic orientations of the graph F', and that an adjacency in G(H) corresponds to reversing
a single arc in the acyclic orientation of F. Stanley [Sta72, Prop. 2.8] proved that the graphic
arrangement of F' is supersolvable if and only if F' is a chordal graph, i.e., F' has no induced cycle
of length 4 or more. Applying Theorem 1, we thus obtain the Gray codes for acyclic orientations
of chordal graphs studied in [SSW93] and [CHM*23].

Via Theorem 2 we also recover the Gray codes for quotients of acyclic reorientation lat-
tices of chordal graphs, whose existence was proved by Cardinal, Hoang, Merino, Micka, and
Miitze [CHM 23], addressing a problem raised by Pilaud [Pil24, Prob. 52].

1.8.5. Type B subarrangements and acyclic orientations of signed graphs. Zaslavsky [Zas82]
showed that subarrangements of the type B Coxeter arrangement can be interpreted as the
type B analogue of graphic arrangements but for signed graphs, in which every edge carries a
sign. The conditions for supersolvability of this arrangement are known; see [Zas01, STT19]. In
particular, these conditions identify a class of signed graphs that are the signed analogues of
chordal graphs, those having a signed perfect elimination ordering. We refer to Sections 2.7
and 2.8 for the definitions. Theorem 1 directly yields new Gray codes for acyclic orientations of
those signed graphs, and Hamiltonicity of the corresponding polytopes.

Corollary 3. For any signed graph that has a signed perfect elimination ordering, the corre-
sponding stgned graphic zonotope has a Hamiltonian cycle.

From Theorem 2 we also directly obtain Gray codes for quotients of acyclic reorientation
lattices of signed graphs, generalizing the result of [CHM™23].

1.8.6. Hamiltonian paths on type A quotientopes. Recall from Section 1.6 that the quotientopes
introduced by Pilaud and Santos are the polytopes whose skeletons are the cover graphs of
quotients of lattice congruences of the weak order of type A. Hoang and Miitze [HM21] proved
that all quotientopes admit a Hamiltonian path, a result that can be recovered as a special
case from our Theorem 2. In particular, we recover a Hamiltonian path on the associahedron
(via the sylvester congruence), which coincides with the Gray codes for binary trees by tree
rotations due to Lucas, Roelants van Baronaigien, and Ruskey [LRvBR93]. Furthermore, we
recover Hamiltonian cycles on rectangulotopes, which coincide with the cyclic Gray codes for
diagonal and generic rectangulations due to Merino and Miitze [MM23].

1.8.7. Hamiltonian paths on type B quotientopes. As mentioned before, type B quotientopes
were defined by Padrol, Pilaud, and Ritter [PPR23] as the polytopes whose skeletons are the
cover graphs of quotients of lattice congruences of the weak order of type B. Applying Theorem 2
to the type B Coxeter arrangement, we thus obtain the following new result.

Corollary 4. The skeleton of any type B quotientope has a Hamiltonian path.

2possibly together with a forced symmetric transposition
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In particular, we obtain a Hamiltonian cycle on the B-associahedron [Sim03]. Via a suitable
bijection, this gives a new cyclic Gray code for point-symmetric triangulations of a convex
(2n + 2)-gon, in which any two consecutive triangulations differ in one flip of the edge through
the center or a pair of symmetric flips not involving the center-edge; see Figures 12 and 13 (see
Theorems 29 and 30 below).

0 0 )
1 3 1
.2 2
132 312
54
3 I 3
0 0 0
1 3 2 1
3 3 i
2 123
3 1 I 0 0
0 o 4 2 ) 1 3
~ 2
1 3 13
y J 3 0 0 0 |
2 132 a 2
3 1 1 1
2
0 0 123 0
2
1 3 é b 3
2 2
132\3 2 . @ @ 132

1 3 p Q ®
0 0
f 3 1 7
1 3 13 0 0
2 \7 _ 9
123 2 1 3 2 213
4 b \3 I p

123 213

FIGURE 12. The skeleton of the B-associahedron, i.e., the cover graph of the lattice
quotient shown in Figure 7, with the pattern-avoiding permutations in full notation.
The Hamiltonian cycle corresponding to the Gray code in Figure 13 for n = 3 is

highlighted.

It is not known whether every cover graph of a quotient of the lattice of regions of a
supersolvable hyperplane arrangement can be realized as the skeleton of a polytope. If so, then
its skeleton admits a Hamiltonian path according to Theorem 2. In fact, Padrol, Pilaud, and
Ritter [PPR23, Conj. 143] conjecture that a polytopal realization is possible if the lattice of
regions is congruence uniform.

1.8.8. Zigzag languages of signed permutations. As another contribution, we develop a theory
of zigzag languages of signed permutations, and obtain the type B analogue of the methods
described in Section 1.3 (see Theorem 17 below). This yields Gray codes for generating several
different pattern-avoiding signed permutations and the corresponding combinatorial objects in
bijection to them.

1.9. Outline of the paper. In Section 2 we set up additional terminology and notation needed
for the proofs of our two main theorems. The proofs of those theorems are presented in Section 3.
In Section 4 we develop the theory of zigzag languages of signed permutations. In Section 5, we
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_3 _3
1234 1342

FiGURE 13. Our new cyclic Gray code for point-symmetric triangulations of a
convex (2n + 2)-gon for n = 1,2, 3,4, given by Theorems 29 and 30. Below each
triangulation is the corresponding pattern-avoiding signed permutation. The ver-
tical bars separate groups of descendants that are derived from the same parent
permutation/triangulation in the previous listing.
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describe three exceptional signed permutation patterns and establish bijections to other combina-
torial objects. In particular, we describe our new Gray code for point-symmetric triangulations
of a convex polygon, and the corresponding Hamiltonian cycle on the B-associahedron.

2. BACKGROUND AND TERMINOLOGY

2.1. Partial orders and lattices. A poset (P, <) is a set P together with a partial order <
on P. We write < for the corresponding strict partial order. An element z € P is minimal if
there is no y € P with y < x. Similarly, « is maximal if there is no y € P with x < y. A cover is
a pair (z,y) of elements of P such that z < y and there does not exist z such that z < z < y.
We write x < y if (x,y) is a cover. The cover relation < is the reflexive, transitive reduction of
the order relation <. Conversely, the order relation < is the reflexive, transitive closure of the
cover relation <. The cover graph of P is the (undirected) graph that has the elements of P
as vertices, and as edges exactly the covers. A poset P is often visualized by a Hasse diagram,
which is a drawing of the cover graph in the plane in which for every cover (x,y), the vertex y is
embedded higher than x. A chain in P is a sequence of covers xg < 1 < --- < 2.

The downset and upset of an element = € P are defined as 2+ := {y | y < z}and 2 := {y | = <
y}. The interval between two elements ,y € P is the subposet [z,y] := TNyt = {z | 2 < z < y}.
A poset P is graded if there is a rank function rk(x) mapping elements of P to integers such
that rk(z) < rk(y) if z < y and rk(y) =rk(z) + 1 if z < y.

Given two elements x,y € P, their meet x Ay is the maximum of z+ Ny, if it exists and
is unique. Dually, their join z V y is the minimum of z' Ny, if it exists and is unique. The
poset P is called a lattice if meets and joins exist for any pair of elements. It follows directly
from this definition that any lattice has a unique minimum and maximum.

2.2. Lattice congruences. Let (L,<) be a lattice. For an equivalence relation = on L
and any x € L, we write [z] := {y € L | x = y} for the equivalence class of z, and we
write L/=:= {[z] | x € L} for the set of all equivalence classes.

A lattice congruence is an equivalence relation = on L such that for all z,2',y,vy’ € L, if
x=2"andy=9y/, then x Ay =2' Ay and x Vy =2’ V. The set of equivalence classes L/=
can be ordered by defining X <Y for X,Y € L/= if there are elements x € X and y € Y with
x < y. Furthermore, this order on L/= is a lattice, namely if [z] and [y] are equivalence classes,
then their meet and join are [z A y] and [z V y], respectively. We refer to L/= with this lattice
structure as the quotient lattice.

We recall some fundamental results about lattice congruences; see [Real6, §9-5] for proofs.

Lemma 5. Let = be an equivalence relation on a finite lattice L.

(i) Every equivalence class is an interval.
(i) We have X <Y in L/= if and only if there are elements x € X andy € Y such that x<<y in L.

2.3. Hyperplane arrangements. We introduce the required terminology regarding hyperplane
arrangements; for more details see [OT92] and [Sta07]. A hyperplane arrangement in R™ is a
nonempty finite set H of hyperplanes through the origin. The rank of an arrangement H is the
dimension of the space spanned by the normal vectors of the hyperplanes, or equivalently, the
codimension of the intersection of all the hyperplanes.

The regions R = R(H) of an arrangement H are the connected components of R™ \ . The
graph of regions G(H) is the adjacency graph of the set of regions, i.e., it has R(#H) as its vertex
set, and an edge between any two regions that are separated by exactly one hyperplane from H.

A flat of an arrangement H in R™ is a subspace of R™ obtained by intersecting some subset
of hyperplanes of H. The intersection lattice L = L(H) of the arrangement H is the set
of flats ordered in reverse inclusion order, completed by a minimal element 0 = R™. The
intersection lattice is a geometric lattice, namely the matroid lattice of the matroid defined by
the arrangements of normal vectors of the hyperplanes of H. Its atoms are the hyperplanes, and
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the rank rk(X) of an element X € L is equal to its codimension codim(X) = n — dim(X), so
that 1k(0) = 0 and rk(H) = 1 for all H € H. Its maximum is given by gy H, and its rank in
the lattice is precisely the rank of the arrangement . The meet of two elements X,Y € L is
equalto X ANY =({Ze€L]|Z2(XUY)}, and the joinis X VY =X NY.

2.4. Zonotopes. With every hyperplane arrangement #, one can associate the zonotope Z(H)
defined as the Minkowski sum of line segments in the directions of the normal vectors of the
hyperplanes in H. The graph of regions G(#) is isomorphic to the skeleton of Z(#H).

2.5. Coxeter arrangements. Interesting hyperplane arrangements are obtained by letting the
normal vectors form a root system of a finite Coxeter group. The standard type A, B, and D
root systems (the type C' is essentially equivalent to the type B for our application) consist
respectively of the following vectors; see [BB05] and [FRO7]:

type A: {&; —¢; | i #j € [n]},

type B: {e; - ¢j|i#j€[n]}u{Lel|ie[n]},

type D: {e;+¢€;|i#j € [n]}.

2.6. Graphic arrangements. Given a simple graph F' = ([n], E), the graphic arrangement
H(F) of I is the arrangement of hyperplanes with the normal vectors {¢; —¢; | {i,j} € E}.
The graphic arrangement is therefore a subarrangement of the type A Coxeter arrangement.
These normal vectors form a realization of the graphic matroid of F', and the intersection lattice
of H(F') is the lattice of flats of this matroid. An acyclic orientation of G is an assignment
of a direction to each edge in E that does not create any directed cycles. The following is a
well-known observation from Greene (see [GZ83]).

Lemma 6. The regions of the graphic arrangement H(F') of a graph F are in bijection with the
acyclic orientations of F'.

2.7. Signed graphic arrangements. A signed graph is a simple graph F' = ([n], E') in which
every edge in F is given a sign from {+, —}, i.e., we obtain a partition £ = ET U E~, where
ET and E~ are the sets of edges with a positive and negative sign, respectively. The signed
graphic arrangement H(F') of F is a subarrangement of the type D root system consisting of
the hyperplanes with normal vectors
(@i e By UlE+E i e B,

Note that if E = ET, then the signed graphic arrangement is a graphic arrangement. Also note
that Zaslavsky [Zas82, Zas91] considered signed graphs with loops and half-edges, whose graphic
arrangements are type B subarrangements. For simplicity, we restrict our definition to simple
signed graphs.

An orientation of an edge e = ij of a signed graph consists of assigning a direction to the two
half-edges composing e. If e € ET, then these two directions must be the same, either both
towards ¢ or both towards j. If e € E~, then the two directions must be opposite, exactly one
towards ¢ and one towards j. An orientation of the signed graph F' is defined by orienting each
of its edges.

A cycle in an oriented signed graph is an inclusion-minimal subgraph whose vertices and edges
can be arranged in an alternating sequence (v1,e1,v2, €2, ..., v, ep) (possibly with repetitions)
where for ¢ = 1,..., ¢, the edge e; has the end vertices v; and v;11, and from the two half-edges
of e;_1 and e; incident with v; exactly one is oriented towards v; (indices are considered cyclically
modulo ¢); see Figure 14. An orientation of a signed graph is acyclic if it does not contain any
cycle.

A cycle in an oriented signed graph may consist of a simple cycle in the underlying unsigned
graph, in which case it must be balanced, i.e., contain an even number of negative edges. However,
unlike for unsigned graphs, a cycle in an oriented signed graph may reuse edges and vertices,
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FIGURE 14. Different types of cycles in oriented signed graphs.

and may hence not be a cycle in the underlying unsigned graph. Specifically, it may consist of
two unbalanced cycles connected by a path or sharing exactly one vertex [Zas91].
Zaslavsky [Zas91] proved the following analogue of Lemma 6.

Lemma 7. The regions of the signed graphic arrangement H(F) of a signed graph F are in
bijection with the acyclic orientations of F'.

2.8. Supersolvable arrangements. An arrangement of hyperplanes H is supersolvable if its
intersection lattice £(#) is supersolvable in the sense of Stanley [Sta72]. We will instead use
the following characterization of supersolvable arrangements given by Bjorner, Edelman, and
Ziegler [BEZ90, Thm. 4.3] as our definition. An arrangement H of rank n is supersolvable if
either n < 2, or n > 3 and H is the disjoint union of two nonempty arrangements Ho and H,
where H is a supersolvable arrangement of rank n — 1, and for any pair of distinct hyperplanes
H, H' € H;, there exists a hyperplane H” € Hg such that H N H' C H".

We proceed to discuss which of the aforementioned hyperplane arrangements are supersolvable.
Among the Coxeter arrangements, those of types A and B are known to be the only supersolvable
arrangements.

For graphic arrangements, supersolvability of the arrangement H(F) is equivalent to chordality
of the graph F. Formally, a graph is chordal if it does not contain any induced cycle of length > 3.
One can also characterize chordal graphs by the existence of a certain elimination ordering on
their vertices. Specifically, a vertex v in a graph F' is simplicial if the neighbors of v induce a
complete subgraph of F'. An ordering vy, vs,...,v, of the vertices of F' is a perfect elimination
ordering if v; is simplicial in F'\ {vy,...,v;—1} for all = 1,...,n. Note that a (reverse) perfect
elimination ordering is obtained by repeatedly removing a simplicial vertex from F. It is well-
known that a graph F is chordal if and only if it has a perfect elimination ordering. Stanley [Sta72,
Prop. 2.8] proved the following; see also [Sta07, Cor. 4.10].

Theorem 8. The graphic arrangement H(F) of a graph F is supersolvable if and only if F is
chordal.

A similar result is known for signed graphic arrangements. Specifically, a vertex v of a signed
graph F' with edge set E = E* U E~ is signed simplicial if for any two distinct neighbors z,y
of v, there is an edge between x and y that completes a balanced triangle, formally:

o if va,vy € ET or vx,vy € E~, then we have xy € ET;

e if vx € ET and vy € E~, then we have zy € E~.

An ordering vy, v9,...,v, on the vertices of F is a signed perfect elimination ordering if v; is
signed simplicial in F'\ {v1,...,v;—1}. Note that a (reverse) signed perfect elimination ordering
is obtained by repeatedly removing a signed simplicial vertex from F'.

Zaslavsky [Zas01, Thm. 2.2] proved the following; see also [STT19, Thm. 4.19] for the explicit
statement on signed graphs.

Theorem 9. If F is a signed graph graph with a signed perfect elimination ordering, then the
signed graphic arrangement H(F') is supersolvable.
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Note that Zaslavsky actually gave a complete characterization (if and only if) of signed graphs
whose arrangements are supersolvable, which includes specific additional graphs. We omit the
details here.

2.9. Structure of the graph of regions G(#). For the following lemmas, we consider a super-
solvable arrangement H of rank n > 3 and the decomposition of H into two subarrangements Hg
and H; given by the definition. We define the surjective map

p: R(H) = R(Ho) (1)

that maps every region of H to the region of Hy that it is contained in.
We recall the following basic properties of supersolvable hyperplane arrangements that can be
found, for instance, in [Ede84, BEZ90].

Lemma 10. Every hyperplane H € Hy has the following properties:
(i) We have tk(Ho U{H}) =n >rk(Ho) =n — 1.
(i) H splits every region in R(Ho) into exactly two regions.

Proof. This proof is illustrated in Figure 15.

/
H HNH .
ngr = (h,l)

Rn—l /

FiGURE 15. Illustration of the proof of Lemma 10.

We assume w.l.o.g. that the dimension of the ambient space equals n = rk(#). Let N(Hg)
denote the set of normal vectors of the hyperplanes in Hg. For vectors z,y € R", we write z - y
for the standard scalar product of x and y. By the definition of supersolvability, we know that
tk(Ho) = n—1 < rk(H) = n. We may choose a basis of R" such that span(N(Hg)) € R"~! x {0}.

To prove (i), consider a hyperplane H € H;, and suppose for the sake of contradiction
that tk(Ho U {H}) = n — 1, i.e., H has a normal vector ng = (s,0) € R" with s € R""L.
Let H' € H; with normal vector ngs ¢ R®~! x {0}. Such a hyperplane exists in H; since
tk(H) = n > rk(Ho) = n — 1. We may assume w.l.o.g. that ng = (h,1) for some h € R~ 1.
Then we have

HNH ={(z,) eR" ' xR|z-s=0Az-h+ =0}
In particular, the map H N H' — s+ defined by (x,)\) + x is surjective. Here, s* C R*~!
denotes the set of vectors in R”~! orthogonal to s. Since H is supersolvable, there exists a
hyperplane H” € Ho with H N H' C H". Let ng» = (t,0) € R™ for some ¢t € R"~! be one of the
normal vectors of H”. Let € s*. By the above, there is A € R such that (z,\) € HNH' C H".
Hence (z,\) - (t,0) = x -t = 0. This shows s+ C t*, so s* = t*. But this implies H = H” € Ho,
a contradiction, so (i) is proved.
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FIGURE 16. The graph of regions G(H) of the arrangement of Figure 3. The lattice
of regions P(H, Ry) is obtained by picking the region labeled 1 as canonical base
region Ry. The resulting lattice is isomorphic to the one shown in Figure 6 (a).

To prove (ii), note that every region R € R(Hg) is of the form R = B x R for some B C R"~!
as N(Ho) C R"! x {0}. Let H € H; with normal vector ny € R". By (i), we may assume that
ny = (h, 1) for some h € R™~!. Then {x € R" | z-ny > 0}NR = {(z,\) € BXxR|z-h+\ > 0}
is a proper subset of R. Hence H splits R into two regions. U

The following key lemma captures the recursive structure of the graph of regions G(H); see
Figure 16.

Lemma 11. The graph of regions G(H) has the following properties:

(i) For any R € R(Hy), the subgraph of G(H) induced by the regions in p~(R) is a path of
length |H1|.

(ii) If two distinct regions R, R’ € R(Ho) are adjacent in G(Ho), then in G(H) the only edges
between the two paths p~(R) and p~1(R') are between the first two and the last two vertices,
and possibly between other pairs of vertices at the same distance from the end vertices.

(iit) If two distinct regions R, R' € R(Hy) are not adjacent in G(Ho), then in G(H) there are
no edges between the two paths p~1(R) and p~1(R').

Proof. We assume w.l.o.g. that the dimension of the ambient space equals n = rk(#).

We first prove (i), and this part of the proof is illustrated in Figure 17 (a). For every
region R € R(Hp) we can choose normal vectors ng € R™ for all H € Hg such that R is the
convex cone R = {x € R" | x-nyg > 0 for all H € Hp}. By Lemma 10 (ii), every hyperplane
H € H; splits R into two regions. For any x € R, consider the ray r,(\) :== Az € R, where A is a
real-valued parameter in the range A\ € (0, 00), which intersects each of the hyperplanes H € H;.
Specifically, for very small A > 0 the point r, () lies on one side of H, and for very large \ it lies
on the other side of H. Consequently, the ray r,(\) defines a total ordering of the hyperplanes
in H1, namely the order in which they are intersected by 7,(A) as the parameter A increases. We
claim that this total ordering is independent of the direction vector x € R. Indeed, suppose for
the sake of contradiction that there are points x,y € R, values 0 < A1 < Az2, 0 < Ay1 < Ay2
and two hyperplanes H, H' € H; such that r,(Ay1) € H, rz(Xz2) € H', ry(M\y1) € H', and
ry(Ay,2) € H. Then for the direction vector z = va + (1 — v)y € R for some suitable v € (0,1)
and A\ > 0 we would have r,(\) € H N H', i.e., some point in the intersection H N H' that is
not contained in any hyperplane from Hy, a contradiction. It follows that for every x € R, the
ray 7;(\) intersects the hyperplanes of H; in the same order, independent of . We distinguish
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FiGUre 17. Illustration of the proof of Lemma 11.

two special regions Ry, Roo € p~!(R), namely the one intersected by r,()) for very small A > 0
and the one intersected for very large A, respectively. By what we said before, each region
in p~1(R) \ {Ro, R} is bounded by exactly two hyperplanes from H1, and Ry, R are bounded
by exactly one hyperplane from ;. This completes the proof of (i).

The proof of (ii) is illustrated in Figure 17 (b). Let R, R’ € R(Hy) be adjacent, i.e., these
two regions are separated by exactly one hyperplane from Hy, which we denote by Hy. By (i),
Pr := p~'(R) and Pp := p~}(R') are paths of length ¢ := |H;|. Let Pr = (Ry,...,R;) and
Pr: = (R, ..., R}) be the sequences of regions along each of the paths. Each edge of the paths
corresponds to a hyperplane from Hi, so for ¢ = 1,...,¢ we let H; € H; denote the hyperplane
separating R;_1 and R;, and H] € H; the hyperplane separating R, _; and R]. As any region R;,
i € {0,...,¢}, is separated from any region R;-, j €10,...,¢}, by Hy € Ho, we have that R;
and R;» are adjacent in G(H) if and only if they are not separated by any hyperplanes from #;.

We observe the following for regions R; and R] that are adjacent in the graph G(#). First of
all we must have {Hy,...,H;} = {Hy,...,H;} and {H;y1,...,H} = {H] ,,...,H)}. Now let
d > 0 be the smallest integer such that H;;q = H/ ;. If d > 1, then as H;;1 and H; 4 appear in
reversed order along Pr and Pg, then these two hyperplanes must intersect, and their intersection
lies in Hy. Furthermore, by a similar argument and the linearity of the hyperplanes we must
have (Hiy1, Hito, ..., Hiya) = (H 4 ..., Hi o, H{ ), i.e., the next d hyperplanes appear in the
opposite order along the two paths Pr and Pg/. Note that this conclusion is trivially true if
d = 1. For any d > 0 we obtain that R;;4 and R} 14 are separated by no hyperplane from #,
(only by Hy € Hg), and therefore they are adjacent in the graph G(H). Furthermore, one can
check that R; for j =i+1,...,i+4d, is separated from R}, k =0,...,i4+d — 1, by at least one
hyperplane from 71, in addition to Hy € Hp, and therefore R; and R}, are not adjacent in the
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graph G(H). Observing that Ry and Rj, are adjacent in G(H), and applying the aforementioned
observation inductively for ¢ =0, ..., ¢ proves (ii).

To prove (iii), note that as R, R’ are not adjacent in G(Hy), they are separated by at least
two hyperplanes H, H' € Hy. It follows that any two regions P € p~'(R) and P’ € p~!(R') are
also separated by both H and H’, and therefore P and P’ are not adjacent in G(H). O

2.10. Lattice of regions. For any graph G and any two vertices x,y in G, we write dg(x,y)
for the distance between x and y in G, i.e., for the length of the shortest path connecting x
and y. Let G = (V, E) be a connected bipartite graph, and let £y € V' be one of its vertices. We
let P(G,xp) be the graded poset on the ground set V' whose cover graph is obtained from G
by orienting all edges away from zp. Formally, we define the rank of any y € V in P(G,x¢) as
rk(y) == dg(xo0,y). As G is assumed to be bipartite, there are no odd cycles and hence no edges
between vertices of the same rank, so this is well-defined.

Using this definition, by choosing one region Ry € R as base region, one can orient the edges
of the graph of regions G(H) away from Ry. As G(H) is always connected and bipartite, this
defines a graded poset P(H, Ry) := P(G(H), Ry), called the poset of regions; see Figure 16. It
is easy to see that in this poset the rank of any R € R is given by the number of hyperplanes
from H that separate Ry and R, i.e.,

rk(R) = [{H € H | Ry and R lie on opposite sides of H}.

Bjorner, Edelman, and Ziegler [BEZ90] proved that for a supersolvable arrangement H, there
always exists a region Ry € R(H) such that the poset P(H, Rp) is a lattice.

To state the next lemma, we define the notion of a canonical region for a supersolvable
arrangement H of rank n > 1. If n < 2, then every region of R(#) is canonical. If n > 3,
we consider the map p defined in (1), and for any R € R(H) we define the fiber ¢(R) :=
p L(p(R)) € R(H). Then a region Ry € R(H) is canonical if p(Ry) is canonical for Ho and if Ry
is the first or last vertex of the path induced by the fiber ¢(Ry) in G(H) (recall Lemma 11 (i)).

Lemma 12 ([BEZ90, Thm. 4.6]). If Ry is a canonical region, then the poset P(H, Ry) is a lattice.

3. PROOFS OF THEOREMS 1 AND 2

3.1. Graphic suspension. For a graph G = (V, E') and subset of vertices U C V we write G[U]
for the subgraph of G induced by U. Given two graphs H = (V, E) and F = (V', E’), the
Cartesian product H x F is the graph on the vertex set V' x V’/ with edge set

H@,2), (.9} | {z,y} € EAa" =y) V(@ =y {2y} € )}
We write Py for the path of length ¢ on the vertices 0,1,...,¢, and we write G ~ H to indicate
that two graphs G and H are isomorphic.

Let G and H = (V, E) be graphs, and let £ > 1 be an integer. We say that G is ¢-suspended
over H if G is a spanning subgraph of the Cartesian product H x P; such that G[{v} x P] ~ P,
for all v € V, and furthermore G[V x {0}] ~ H and G[V x {{}] ~ H. In words, G is a spanning
subgraph of the Cartesian product of H with a path of length £ in which all copies of the path are
present, and the first and last copy of H along the paths are present, whereas edges of the other
intermediate copies of H along the paths may or may not be present. The notion of suspension is
introduced to provide a graphic translation and clarification of the structure described in [BEZ90).
Specifically, using this definition, Lemma 11 can be restated more concisely as follows.

Lemma 13. The graph G(H) is (isomorphic to a graph that is) £-suspended over G(Hy) for
l:= ‘H1|

Lemma 14. Suppose that G is £-suspended over H. Then for any two vertices x,y of H and
any i € {0,...,¢} we have dg((z,0), (y,7)) = da((x,£), (y,£ — 1)) = dy(z,y) + .

Proof. This is immediate from the definition of suspension via the Cartesian product. O
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FIGURE 18. Illustration of Lemma 15, continuing the example from Figure 16 (also
see Figure 10).

We also need a second (non-equivalent) definition of suspension, which does not use Carte-
sian products. Given a sequence (A(x)),ey of integers A(z) > 1, we say that G is A-suspended

over H = (V, E) if G is the union of the paths ((x,0), (z,1),..., (z, A(x))) and the edges {(x,0), (y,0)}

and {(z,A\(z)), (y, A(v))} for all {z,y} € E. In words, G is A-suspended over H if it consists of
two disjoint copies of H, which are connected via disjoint paths between corresponding pairs
of vertices, where the lengths of the paths are specified by the function A. Note that if G is A-
suspended for the constant function A := £ for all x € V', then it is f-suspended, and furthermore
it is the ¢-suspended graph with the fewest possible edges.

The following easy lemma asserts that suspended graphs behave particularly nicely with
regards to Hamiltonian paths/cycles.

Lemma 15. Suppose that G is A\-suspended over H. If H has a Hamiltonian path, then G has
a Hamiltonian path.

Furthermore, if G is £-suspended over H and H has a Hamiltonian cycle of even length,
then G has a Hamiltonian cycle of even length.

Lemma 15 and its proof are illustrated in Figure 18.

Proof. Let V be the vertex set of H and let (z1,...,2,) be a Hamiltonian path in H. Then
for each odd index k, replace zj by the path ((xg,0), (zg,1),..., (xk, A(zg))) in G. Similarly,
for each even index k, replace x by the path ((zg, AM(xg)), (xg, AM(ag) — 1),...,(zx,0)) in G.
Consecutive pairs of end vertices from these subpaths are of the form {(xy,0), (zx41,0)} if & is
even and {(zg, AM(zg)), (Tg+1, AM(xx+1))} if k is odd, respectively, i.e., these are edges in G. We
conclude that the resulting sequence of vertices in G is a Hamiltonian path.

To prove the second part of the lemma assume that n is even and that (z1,...,z,) is
Hamiltonian cycle in H, i.e., a Hamiltonian path such that z,, and z; are adjacent vertices.
Then the above argument yields a Hamiltonian path from (z1,0) to (x,,0) in G, so the
pair {(x1,0), (z,0)} is an edge in G[V x {0}] ~ H. We thus also obtain a Hamiltonian cycle
in G of length (£ + 1) - n, which is even. O

3.2. Congruences on lattices with suspended cover graphs. The following crucial propo-
sition describes how a congruence acts on a lattice whose cover graph is suspended.

Proposition 16. Suppose that G is (-suspended over H = (V,E), and let ¢ be a vertex
of H such that Ly := P(H,zo) and Lg := P(G, (x0,0)) are both lattices. Then Lg[V x {0}]
and Lg[V x {}] are two sublattices isomorphic to Ly, and (z,0) < (z,1) <--- < (x,£) is a chain
for each x € V. Furthermore, for any lattice congruence = on Lg we have the following:
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F1cure 19. Illustration of the proof of Proposition 16. The bold lines indicate pairs
of elements that are in the same equivalence class. The arrows indicate (directed)
forcing constraints between pairs of equivalent pairs.

(i) The restriction =* := {(z,y) | (,0) = (y,0)} is a lattice congruence on Ly.
(ii) For any equivalence class X of =, the projection p(X) := {x | (x,i) € X} is an equivalence
class of =*.
(1ii) The quantity A(z) = [{[(z,7)] | i =0,...,£}| — 1, defined for any x € V, is either equal to 0
for all x € V' or strictly positive for all x € V.
(iv) If the cover graph of Ly /=" has a Hamiltonian path, then the cover graph of Lg/= has a
Hamiltonian path.

Of course, by symmetry the poset P(G, (zg,¢)) is also a lattice.

Proof. For any x € V and r € {0,...,¢} we define Cy(z) := {(x,i) | 0 <i < A} and C(z) :=
Cy(z). The fact that L[V x {0}] and Lg[V x {¢}] are sublattices isomorphic to Ly and that
the elements of C'(z) form the chain (z,0) < (z,1) < --- < (z,{) for each x € V follows directly
from Lemma 14 and our definition of rank in Lg = P(G, (o, 0)).

We now prove (i). For any two x,y € V' we have

(z,0) A (y,0) = (z Ay, 0). (2)

Now consider four elements z,z’,y,y’ € V satisfying x =* 2’/ and y =* ¢/. From the definition
of restriction, we have (z,0) = (2/,0) and (y,0) = (¢/,0). Applying the definition of lattice
congruence to =, we obtain that (x,0) A (y,0) = (2/,0) A (¢/,0). Applying (2) to this relation
yields (x A y,0) = (' Ay/,0), from which we obtain = Ay =* 2’ A ¢/ with the definition of
restriction. The argument for joins is dual, proving that =* is indeed a lattice congruence of L.

The proof of (ii) and (iii) needs the following auxiliary claim (a), which is immediate from
the definition of lattice congruence; see Figure 19 (a): Consider the lattice L formed by two
chains g <21 <--- <y and yo < y1 < --- <y with z9 = yo, ¢ = Yy, and xz; # y; for
any i,7 € {1,...,£ — 1}, and let = be a lattice congruence on L. If 9 = z1, then we have
W=yYyr—1=---=y1. fys=1yp_1, then we have zg =21 = = x4_1.
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Given {z,y} € F and a sequence v = (1p,...,vs) where s > land 0 =1y < v < -+ < vg =¥,
where s > 1, the (¢,v)-ladder is the f-suspended graph over {z,y} in which precisely the
edges {(x,v;), (y,vi)} are present for all i =0, ..., s; see Figure 19 (b).

To prove (ii) and (iii), consider a cover z <y in Ly. Then the interval [(x,0), (y,¢)] in Lg
contains exactly the elements C(z) U C(y) and its cover graph is an (¢, v)-ladder L for some
sequence v = (1, ..., Vs) determined by G. From our auxiliary claim (a), we obtain the following
about the ladder L; see Figure 19 (b): If (z,v;) = (y,v:), then we have (z,v;-1) = (y,vi—1)
and (x,vi+1) = (y,Vi4+1), and furthermore (z,v;) = (z,v; — 1) = --- = (z,1;1 + 1) and
(y,vi) = (y,vi+1) =--- = (y,vi+1 — 1). Applying this observation exhaustively, we note that
either (z,v;) # (y,v;) for all i = 0,...,s, or (z,15) = (y,;) for all i = 0,...,s, and in the
latter case for every i € {0,...,¢} there is some j € {0,...,¢} with (x,7) = (y,j) and for every
j €40,...,¢} there is some i € {0,...,¢} with (x,7) = (y,j). This proves property (ii).

To prove (iii), note that the auxiliary claim (a) applied to the ladder L yields that (x,0) =
(x,1) =--- = (x,¢) if and only if (y,0) = (y,1) =--- = (y,{); see Figure 19 (c¢). Consequently,
the number of equivalence classes of = along every chain C(z), x € V, is either equal to 1 for
all x € V or strictly larger than 1 for all z € V| which proves (iii).

It remains to prove (iv). If A(z) = 0 for all x € V, then we have Lg ~ Ly and therefore
Lg/=~ Ly /=", so the claim is trivial. On the other hand, if A(z) > 1 for all x € V, which is
the only other possibility by (iii), then the cover graph of Lg/= has an induced subgraph that
is A-suspended over Ly /=" by (ii) and Lemma 5. Using the assumption that the cover graph
of Ly /="* has a Hamiltonian path, applying the first part of Lemma 15 proves that the cover
graph of Lg /= also has a Hamiltonian path.

This completes the proof. O

3.3. Proofs of Theorems 1 and 2. We are now ready to present the proof of our two main
theorems.

Proof of Theorem 1. The proof is by induction on the rank n > 2 of H. If n = 2, then the graph
of regions G(H) is a cycle of length 2|#H| and thus clearly has a Hamiltonian cycle of even length.
If n > 3, then consider the decomposition of H into two subarrangements Hy and Hy. As Hyg is
a supersolvable arrangement of rank n — 1, we know by induction that G(H() has a Hamiltonian
cycle of even length. Applying Lemma 13 and the second part of Lemma 15 yields that G(H)
has a Hamiltonian cycle of even length. ([

Proof of Theorem 2. The proof is by induction on the rank n > 1 of H. If n = 1, then the cover
graph of L is a single edge. If n = 2, then the cover graph of L is a cycle of length 2|#|. By
Lemma 5 (i), the equivalence classes of = are intervals, so in the two aforementioned cases the
cover graph of L/= is either a cycle, a single edge, or a single vertex, hence it has a Hamiltonian
path.

If n > 3, then consider the decomposition of H into two subarrangements Hy and Hj.
Let Ry € R(H) be a canonical base region, then p(Ry) is canonical for Hy. We know that
L' := P(Ho,p(Ro)) = P(G(Hop),p(Rp)) and L = P(H,Ry) = P(G(H), Ry) are lattices by
Lemma 12. Furthermore, we know that G(H) is (isomorphic to a graph that is) ¢-suspended
over G(Hy) for £ := |H1| by Lemma 13.

For any R € R(H), we let p(R) € R(H) be the minimum of the chain on the fiber ¢(R) in L.
Let = be lattice congruence on L. By Proposition 16 (i) the restriction =* := {(p(X), p(Y)) |
X =p(X)and Y =p(Y) and X =Y} is a lattice congruence on L'. As H, is a supersolvable
arrangement of rank n — 1, we obtain by induction that the cover graph of L'/=* has a
Hamiltonian path. Therefore, applying Proposition 16 (iv) yields that the cover graph of L also
has a Hamiltonian path. This completes the proof. U
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4. ZIGZACG LANGUAGES OF SIGNED PERMUTATIONS

In this section we develop a theory of zigzag languages of signed permutations, analogous to
the theory for (unsigned) permutations presented in [HHMW22] and discussed in Section 1.3. We
also show applications to generating pattern-avoiding signed permutations and the corresponding
combinatorial objects. With this paper we hope to encourage further study of pattern-avoiding
signed permutations by the pattern-avoidance community.

4.1. Patterns in permutations and signed permutations. Recall from Section 1.8.3 that
we use bars to denote negative signs in a signed permutation. We write B,, for the set of signed
permutations of [n] in full notation (length 2n), and we will use this representation throughout.
We index the entries in a signed permutation 7 € By, by integers from [7] U [n], i.e., we consider 7
as a string ™ = (am, ..., af,a1,...,a,), where a; = @; holds for all i € [n] U [n]. Notably, the
index 0 does not exist. Furthermore, we write S,, for the set of (unsigned) permutations of
length n. We write ¢ for the empty string, i.e., we have By = {¢} and Sy = {e}. The identity
signed permutation is id, :=n---2112---n € B,.

We say that a string 7 of integers contains a pattern T € Sy, if there is a subsequence of k (not
necessarily consecutive) entries in 7 in the same relative order as in 7. Otherwise we say that 7
avoids 7. We apply this definition in both cases when 7 € S, is a permutation of length n, or
when 7 € B, is a signed permutation in full notation, where in the second case the signs of entries
are taken into account when comparing relative positions. For example, 7 = 42311324 € By
contains the pattern 7 = 231, as witnessed by the subsequence 233, or alternatively by the
subsequences 213 and 213. We write S,,(7) for the set of all permutations from S, that avoid 7,
and similarly B, (7) for the set of all signed permutations from B,, that avoid 7.

Generalizing the notion of pattern-containment for signed permutations, we also allow un-
derlining or overlining some of entries in a pattern 7 € S, with the interpretation that an
underlined entry of the pattern has to match a strictly positive entry in the signed permutation,
whereas an overlined entry of the pattern has to match a strictly negative entry in the signed
permutation. We refer to such a pattern as a marked (signed) permutation pattern. For exam-
ple, in the signed permutation 7 from before, the first two occurrences of the pattern 231 are
also occurrences of the pattern 231, whereas the third occurrence is also an occurrence of the
pattern 231. Note that there are some trivial equivalences of patterns, in the sense that the set
of avoiders are identical. Specifically, if an entry in a marked pattern is underlined, then all
larger entries may also be underlined. Similarly, if an entry is overlined, then all smaller entries
may also be overlined. For example, the patterns 231 and 231 are equivalent in this sense, and
so are the patterns 231, 231, 231 and 231.

4.2. Jumps in signed permutations. Given a signed permutation w € B,,, a left hop of the
value a; > 0, ¢ # 7, is a transposition of the value a; with the value b directly to its left, i.e.,
either with b :=a;_1 if ¢ # 1 or b:= aj if i = 1, subject to the constraint that a; > b. Similarly,
a right hop of the value a; > 0, i # n, is a transposition of the value a; with the value b directly
to its right, i.e., either with b := a;y1 if i # 1 or b := a; if i = 1, subject to the constraint
that a; > b. A left jump of a; > 0 by d steps is sequence of d consecutive left hops of the
value a;. Similarly, a right jump of a; > 0 by d steps is a sequence of d consecutive right hops of
the value a;. In all these operations the modifications are applied to the permutation in full
notation in a symmetric way, so that the property a; = @; for all i € [#] U [n] is maintained. For
a subset L, C B, and a permutation m € L,, a jump in 7 is minimal w.r.t. L, if no jump of the
same value by fewer steps yields a signed permutation from L,,. For example, if Ly := B4(231),
then in the permutation 7 = 21433412 € Ly a right jump of the value 4 by 5 steps is minimal,

yielding the permutation 42133124 € Ly as each of the intermediate permutations 21344312,
21344312, 21433412, 24133142 contains the marked pattern 231.
We propose the following algorithm to generate a set of signed permutations by minimal

jumps. An analogous algorithm for (unsigned) permutations was first presented in [HHMW22].



26 COMBINATORIAL GENERATION VIA PERMUTATION LANGUAGES

Algorithm J (Greedy minimal jumps for signed permutations). This algorithm attempts to
greedily generate a set of signed permutations L,, C B,, using minimal jumps starting from
an initial signed permutation mg € L,,.

S1. [Initialize] Visit the initial signed permutation 7.

S2. [Jump] Generate an unvisited signed permutation from L,, by performing a minimal jump
of the largest possible positive value in the most recently visited signed permutation. If
no such jump exists, or the jump direction is ambiguous, then terminate. Otherwise visit
this signed permutation and repeat S2.

4.3. Zigzag languages of signed permutations. For any 7 € B,,_; and integer i € [] U [n]
we write ¢;(m) € B, for the signed permutation obtained by inserting the largest value n and
smallest value 7 at positions i and i, respectively. In particular, cz(m) = n7n and ¢, (7) = n7wn.
Conversely, for any m € B,, we write p(m) for the permutation in B,,_; obtained by deleting the
extremal values n and m. Clearly, we have p(c;(r)) = m. For example, for m € 1221 we have

(c5(m), e (), e5(x), 1 (), ea(m), e3(m)) = (312213, 132231, 123321, 123321, 132231, 312213).

A set L, C B, is a zigzag language, if either n = 0 and Ly = {e}, or if n > 1 and
L1 :={p(r) | m € L,} is a zigzag language such that for every = € L,_; we have that
cp(m)=nmn € L, and ¢,(7) =n7wn € L.

Theorem 17. Given any zigzag language of signed permutations Ly, and initial permutation mg =
idy,, Algorithm J visits every signed permutation from L, ezxactly once.

The proof is analogous to the proof of Theorem 1 in [HHMW22].

Proof. Given a zigzag language L,, we define a sequence J(L,) of all signed permutations
from L,, and we prove that Algorithm J generates the permutations of L,, exactly in this order.
For any m € L,,_1 we let ¢(r) be the sequence of all ¢;(7) € L, fori =n,n —1,...,1,1,...,n,
starting with cz(m) and ending with ¢, (), and we let ‘¢ (7) denote the reverse sequence, i.e., it
starts with ¢, (7) and ends with cz(7). In words, those sequences are obtained by inserting the
new largest value n from left to right, or from right to left, respectively, into 7, in all possible
positions that yield a signed permutation from L, skipping the positions that yield a permutation
that is not in L,,. The sequence J(L,,) is defined recursively as follows: If n = 0 then we define
J(Lo) :=¢, and if n > 1 then we consider the finite sequence J(Ly_1) =: (m1, 72, ...) and define

J(Ln) = ?(W1)7 E)(WQ)?(E(Wfﬂ)a _6)(7T4)7 R

i.e., this sequence is obtained from the previous sequence by inserting the new largest value n in
all possible positions alternatingly from right to left, or from left to right.

A straightforward induction shows that Algorithm J generates the signed permutations in L,
precisely in the order J(L,). We omit the details. The crucial observation is that a minimal jump
in a signed permutation m € L,,_1 is also a minimal jump in the two permutations cz(7) =n7nn
and ¢y, (7) = m7n, because the values n and 7 are inserted at the boundaries. O

Remark 18. It is easy to see that in the ordering of signed permutations J(L,,), the first and
last permutation differ in a minimal jump if and only if |L;| is even for all ¢ = 1,...,n — 1.
Consequently, if this condition holds, then the Gray code produced by Algorithm J is actually
cyclic.

The following lemma provides easily checkable sufficient conditions on a signed permutation
pattern 7 so that B, (7) is a zigzag language.

We say that an infinite sequence of sets Lg, L1, ... with L; C B; for all ¢« > 0 is hereditary if
L;—1 = p(L;) holds for all i > 1. We say that a signed permutation pattern 7 is tame, if By, (1),
n > 0, is a hereditary sequence of zigzag languages.
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Lemma 19. If in a marked pattern T € Sy, the smallest value 1 is underlined or not at the
leftmost or rightmost position, and the largest value k is overlined or not at the leftmost or
rightmost position, then T is tame. In particular, if T € Sk has neither the smallest value 1 nor
the largest value k at the leftmost or rightmost position, then it is tame.

Four of the signed permutation patterns shown in Table 3 classify as tame by Lemma 19.

Proof. Consider a marked pattern 7 € Sy satisfying the conditions of the lemma. We prove that
B, (1), n > 0, is a hereditary sequence of zigzag languages by induction on n. The induction
basis n = 0 is trivial, as By(7) = {¢}. For the induction step, we assume that B,_1(7) is a
zigzag language. If m € B,, avoids 7, then clearly p(7) € B,,_1 also avoids 7, as removing the
values n and 7 cannot create an occurrence of the pattern 7. If follows that B,_1(7) 2 p(By(7)).
We next show that if m € B,,_1 avoids 7, then both cz(7) = n7n7m and ¢, (7) = " n avoid 7. As
p(ca(m)) = m and p(cy (7)) = 7, this proves that B,,_1(7) = p(By(7)) and it also establishes the
zigzag property. Indeed, any occurrence of 7 in one of the signed permutations cz(7) and ¢, ()
must contain 7 or n, and those entries must match the smallest and largest values in 7 with
the correct sign, respectively, which must be at the leftmost or rightmost position in 7. This,
however, is ruled out by the assumptions on 7 stated in the lemma. O

TABLE 3. Various signed permutation patterns 7 and corresponding counting se-
quences and combinatorial objects. The third column indicates whether Algorithm J
succeeds to generate the set of all pattern-avoiding signed permutations. A pattern
being tame is sufficient for this property by Theorem 17.

T tame AlgJ |B,(7)[,n=0,1,...,6 OEIS combinatorial objects

21 no 1,2,4,8,16,32,64 A000079 binary strings

21 no yes 1,1,2,6,24,120,720 A000142 permutations — Sec. 5.1

231 yes  yes 1,2,8,40,224,1344,8448  A151374, A052701 two-colored binary trees — Sec. 4.3.1
213 no yes 1,2,4,8,16,32,64 A000079 binary strings — Sec. 5.2

231 no yes 1,2,6,20,70,252,924 A000984 symmetric triangulations — Sec. 5.3
§31 no —— ——

231 no 1,2,4,10, 34,154,874 A003422

231  no 1,2,6,22,94, 462, 2606 A193763

231  no 1,2,4,9,23,65,197 A014137

231 no —_— —n—

3142 yes yes  1,2,7,32,169,974,5947  A115107
3412 yes  yes  1,2,7,33,183,1118,7281  A0SG618
3412 yes yves  1,2,7,34,209,1546,13327 A002720

Remark 20. So far we have only considered avoidance of a single pattern. However, the theory
generalizes straightforwardly to avoiding multiple patterns. This is based on the observation that
the intersection of two zigzag languages is again a zigzag language (also the hereditary property is
preserved). Consequently, if we have tame patterns 71, ..., 7y, then the set of signed permutations
avoiding each of 7, ..., 7y is also a zigzag language that can be generated by Algorithm J.

Note that Theorem 17 provides a sufficient condition for Algorithm J to generate a set of
signed permutations L,, C B,, exhaustively, namely to be a zigzag language. To close this section,
we consider one of the tame patterns mentioned in Table 3 and present the resulting listing of
combinatorial objects obtained from applying Algorithm J.


http://oeis.org/A000079
http://oeis.org/A000142
http://oeis.org/A151374
http://oeis.org/A052701
http://oeis.org/A000079
http://oeis.org/A000984
http://oeis.org/A003422
http://oeis.org/A193763
http://oeis.org/A014137
http://oeis.org/A115197
http://oeis.org/A086618
http://oeis.org/A002720

28 COMBINATORIAL GENERATION VIA PERMUTATION LANGUAGES

4.3.1. The tame pattern 231. Let 7 := 231. We present a bijection between signed permutations
avoiding the pattern 7 and binary trees whose vertices are colored in one of two colors, red
or blue, say. We write T, for the sets of binary trees with n vertices, and 7, for the set of
two-colored binary trees with n vertices.

Theorem 21. Let 7 := 231. There is a bijection g : T, — By(7), and therefore | B, ()| = 2"C,,

where Cp, 1= r%kl(%?) are the Catalan numbers.

Proof. The bijection g uses as a building block the following well-known bijection f : T, — S,,(231)
between binary trees and 231-avoiding permutations; see Figure 22. We consider each tree T' € T,
as a binary search tree, with the vertices labeled bijectively with integers 1,...,n such that the
label of every vertex is larger than all labels in the left subtree and smaller than all labels in
the right subtree. Given a tree T with root r and left and right subtrees T and TR, we define
F(T) := (r, f(T"), f(TR)), i.e., we first write the label of the root, then recursively all labels
in the left subtree, then recursively all labels in the right subtree. One can easily check that
this mapping f is indeed a bijection between T, and S,,(231), and that it induces a one-to-one
correspondence between tree rotations and minimal jumps in 231-avoiding permutations (for
details, see [HHMW22, Sec. 3.3]).

To construct the desired bijection g : 7, — B,(7), note that 7 = 231 = 231, i.e., when
searching for occurrences of this pattern in a signed permutation in full notation, one only needs
to consider the positive entries, whereas all negative entries can be completely ignored. Hence,
the mapping g can be defined as follows: Given a two-colored tree T" € T,/ we first consider the
underlying uncolored tree T" € T, and construct the permutation 7 := f(T) € 5,(231). In the
second step, we define which n out of the 2n entries of g(T") receive a negative sign. Specifically,
the entry at position i € [n] of g(T") receives a negative sign if vertex i is colored red in 7", and
a positive sign if vertex ¢ is colored blue. Note that in the first case this forces the entry at
position i to have a positive sign, and in the second case this forces entry at position 7 to have a
negative sign. In the third step, we fill the string 7 into the n positions of ¢g(7”) with a positive
sign from left to right, which defines the signed permutation g(7”) completely (the values of the
negatively signed entries are forced). It can be checked directly that this mapping g is indeed a
bijection between T, and B, (7).

It is known that |7,| = C,, and since each tree with n vertices can be colored in 2" ways, this
proves the claimed counting formula. O

As 7 is tame by Lemma 19, we may use Algorithm J to generate B, (7); see Figure 20. The
resulting Gray code is cyclic by Remark 18. The minimal jumps performed by Algorithm J
translate to the following three types of operations on the two-colored trees 7,/: Vertex 1 switches
its color; vertices ¢ and ¢+ 1 exchange their colors; a tree rotation combined with a cyclic rotation
of colors among an interval of vertices.

5. THREE EXCEPTIONAL PATTERNS

Interestingly, we found three patterns 7 that are not tame and for which B,,(7) is not a zigzag
language (i.e., Theorem 17 does not apply), and yet Algorithm J succeeds in generating the
set B, (7) exhaustively. We were not able to treat those exceptional patterns in a unified way,
and we were also not able to find more such exceptional patterns for which Algorithm J would
work. Consequently, in this section we describe each of these patterns separately. The last one
is particularly important, as it corresponds to the type B associahedron.

5.1. The pattern 21 and (unsigned) permutations. Let 7 := 21. Signed permutations
avoiding this pattern have all negative entries on the set of positions [r2], and all positive entries
on the set of positions [n], and no other constraints, i.e., they are in bijection with (unsigned)
permutations. The pattern 7 is not tame and By, (7) is not a zigzag language, and yet Algorithm J



n=1
n=2
n=3

COMBINATORIAL GENERATION VIA PERMUTATION LANGUAGES 29

i1 11

5712 1221 1221 2712 2112 1221 1221 5112

321123 é@ @i @i @i 319213 132231
531132 513312 313312 531132 321123

123321 123321 319213 312213 132331 312313 321123 231132

321123 321123 231132 213312 213312 @®® @g 3@

321123 312213 132231

321123

132231 312213 321123 231132 213312

FIGURE 20. Listings of signed permutations B,(7) for n = 1,2,3 for the tame
pattern 7 = 231 generated by Algorithm J and corresponding two-colored binary
trees.

succeeds in generating the set B, (7) when initialized with 7y := id,, and the corresponding
ordering of permutations is the Steinhaus-Johnson-Trotter ordering.

5.2. The pattern 213 and binary strings. Let 7 := 213. We present a bijection between
signed permutations avoiding the pattern 7 and binary strings of fixed length.

Theorem 22. Let 7 := 213. There is a bijection h : By (1) — {0,1}", and therefore | B, (1)| = 2™.

Proof. The following properties can be easily verified by induction. The structure of a signed
permutation 7 € B,,_1(7) is either

m=1idp—1 (case 1),

or for some k € {0,1,...,n — 2} we have

a=Mn-k—1n—-k....n—-2n—-1,7n—1n—-2....n—k—1) (case?2)
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n=1 n=2 n = n=4
11 O 211217 321123 (110 43211234 [(I11J
. 5 391123 [T 43211234 [T 1
W 212TH o0 5 e 43511231 (T HE
2112 Bl 937139 (] 34211243 [
1221 W] 231132 W] 34211243 (L)
321123 NN 43211234 [N
312213 MM 42311324 (L1
123321 W] 23411432 (W 1]
93411432 W]
42311324 WL
43211234
34211243 L]
34122143 WML
43122134 W
41233214 WM
123443217 BT

FIGURE 21. Listings of signed permutations B, (7) for n = 1,2, 3,4 for the non-
tame pattern 7 = 213 generated by Algorithm J and corresponding binary strings.
Each 0-bit is visualized as a white square, and each 1-bit as a black square. The
resulting ordering is the classical binary reflected Gray code.

with 7’ € B,,_p_2(7). For every such permutation 7 there are exactly two indices i € [r] U [n]
such that ¢;(7) € By (7), namely, in case 1

cp(n) = (nm,m) (— case 2),
cn(m) = (m,m,n) = (m,idy—1,n) =id,, (— case 1);

and in case 2

ca(m) = (n, M) (— case 2),
(M =m—-k—-1,....n—1na mn—1,...,n—k—1) (— case 2).

In other words, in both cases the new largest value n can be inserted at the leftmost position,
and directly after the maximum increasing prefix.

The bijection h : By, (7) — {0,1}" can thus be defined as follows: Given 7 € B, (7) and i € [n],
consider 7’ := p"~!(7) € B;(7), and if the largest value i in 7’ is at the leftmost position, then
the ith bit of h(m) is defined to be 1, and 0 otherwise. O

The pattern 7 is not tame and B, (7) is not a zigzag language, and yet Algorithm J succeeds
in generating the set By, (7) when initialized with 7y := id,; see Figure 21. The resulting ordering
of binary strings is the classical binary reflected Gray code, i.e., minimal jumps performed by
the algorithm translate to single bitflips.

However, there is no one-to-one correspondence between minimal jumps in 7-avoiding permu-
tations and bitflips in the hypercube. In particular, the initial signed permutation id,, admits
only one possible minimal jump (the value n jumping all the way to the other side). Conse-
quently, the listing of 7-avoiding signed permutations is not cyclic under minimal jumps, even
though the binary reflected Gray code is cyclic, i.e., the last binary string differs only in a single
bit from the first string.

5.3. The pattern 231 and point-symmetric triangulations. For the rest of this section,
we consider the permutation pattern 7 := 231. This pattern is not tame and B, (7) is not a
zigzag language, and yet Algorithm J can be used to generate the set B, (7) exhaustively. In
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order to prove this (Theorem 30 below), we precisely describe the structure of 7-avoiding signed
permutations. This also helps us to establish a bijection between signed permutations in B, (T)
and point-symmetric triangulations of a convex (2n + 2)-gon, with the property that minimal
jumps in the permutations are in one-to-one correspondence to flips in the triangulations (see
Section 5.3.4 and Theorem 29 therein). As a consequence, Algorithm J not only lists all signed
permutation of B, (7), but the listing actually corresponds to a Hamiltonian path on the B-
associahedron [Sim03, Rea06]; see Figures 7, 12 and 13.

The bijection is essentially the same as the one described in [Rea06, Sec. 7|. However, we
describe it purely combinatorially, without reference to lattice-theoretic concepts. Our goal is to
give a simple, explicit description that can easily be exploited for the purpose of Gray codes.

5.3.1. Triangulations. We consider a set of n + 2 points in the plane, placed equidistantly on
the unit circle and labeled 0,1, ...,n,0 in counterclockwise (ccw) order. We write A,, for the
set of triangulations on this point set. A flip in a triangulation removes one of its inner edges
and replaces it by the other diagonal of the resulting empty quadrilateral. It is well-known that
there is a bijection between A,, and S, (231), and that both families of objects are counted by
the Catalan numbers, i.e., we have |A,| = [5,(231)| = C,, = n%rl(?s)

The bijection g : A, — S,(231) will be used as a building block later, so we define it in the
following; see Figure 22: Given a triangulation T' € A,,, we consider the triangle in 7' seen
through the edge 00. To obtain g(T'), we process each of the n the triangles one by one, recording
one vertex of each triangle. Specifically, for every (ccw) triangle abc seen through the edge ac, we
record the label of the third vertex b, and we then recursively compute g(7%) and g(T%), where
T and T® are the subtriangulations of T seen through the left edge ab and the right edge be,
respectively. Therefore, if b is the third vertex of the triangle in T containing the edge 00, then

g(T) = (b, g(T"), g(T™)).

Lemma 23 ([HHMW22]). The mapping g : A, — Sn(231) is a bijection that induces a
one-to-one correspondence between flips in triangulations and minimal jumps in 231-avoiding
permutations.

Note that the composition f~tog : A, — T, where f : T, — S,(231) is the bijection
described in the proof of Theorem 21, is the geometric duality mapping that assigns to every
triangulation its corresponding dual tree (seen through the edge 00). Furthermore, note that
flips in triangulations are in one-to-one correspondence with tree rotations under this bijection.

3 G5 g 431265879
f

Sn(231) «——L A,

‘\—/

flog

Tn

FiGURE 22. Bijections between binary trees, 231-avoiding permutations and trian-
gulations of a convex polygon.
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ool
N |
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[\V]]

FI1GURE 23. A symmetric triangulation, and the two possible flip types.

5.3.2. Point-symmetric triangulations. We consider a set of 2n 4+ 2 points in the plane, placed
equidistantly on the unit circle and labeled 0,1,...,7n,0,1,...,7 in ccw order; see Figure 23. Note
that the points ¢ and i are opposite to each other on the circle. A symmetric triangulation is a
triangulation of this point set that is point-symmetric w.r.t. the origin, i.e., whenever an edge uv
is present, then the edge @7 must also be present. We write A} for the set of all symmetric
triangulations on this point set. Note that every such triangulation has a unique edge uw through
the origin, which we call the central edge. A flip in a symmetric triangulation either consists of
a single flip of the central edge, or a pair of symmetric flips not involving the central edge.

Observe that a symmetric triangulation is uniquely determined by the subtriangulation on
one side of the central edge, and that there n + 1 different central edges i7, i = 0,...,n. It
follows that [A%| = (n + 1)|A,| = (n + 1)Cp, = (*7), i.c., symmetric triangulations are counted
by the central binomial coefficients.

5.3.3. Structure of T-avoiding signed permutations. Our first lemma, illustrated in Figure 24,
describes the structure of 231-avoiding (unsigned) permutations. In the following, for a string x =
(z1,...,2s), we write |z| := s for its length.

Lemma 24. For a permutation m = (a1,...,an) € Sy, let s € [n] be the index of the value 1
in 7, and define 7% = (x4, ...,21) := (a1,...,as) and ™ = (as41,...,a,). Then m = (74, 7%)
avoids 231 if and only if the following conditions hold:
(i) We have x5 > x5_1 > -+ > x1 = 1, i.e., the values to the left of 1 appear in decreasing order.
(ii) There is a decomposition % = (7., 78) where 11 < 7} < 2o <7 < - <241 <
7l <z < 7R, such that each of the subpermutations 7733, j=1,...,s, avoids 231.

The inequality z; < 7T]R < z;4+1 means that all values of the subpermutation 7t are larger

J
than x; and smaller than x;.

Proof. We first assume that 7 € S,, avoids 231. To prove (i), note that if there are indices
i < j < s with a; < aj, then a;a;as = a;a;1 is an occurrence of the pattern 231, a contradiction.
To prove (ii), we first establish the following auxiliary claim: For any j € [s], we have that in 7%
all entries smaller than x; are to the left of all entries larger than x;. Indeed, if there is a j € [s]
and indices s + 1 < k < £ < n such that a; > x; > ay, then z;a,a, is an occurrence of 231, a
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F1GURE 24. Illustration of the structure of a 231-avoiding permutation as captured
by Lemma 24. Specifically, the figure shows the corresponding permutation matrix,
i.e., a point in column ¢ and row j indicates that the permutation has the value j at
position 7.

contradiction. This proves the decomposition of 7 into subpermutations 7T})”, J € [s], claimed
in (ii). Clearly, each of these subpermutations must also avoid 231.

Now assume that 7 € S, satisfies (i) and (ii). If a;a;jax, i < j < k, is an occurrence of 231 in 7,
then we have a < a; < a;, and we distinguish three possible cases: (1) The values a; and a;
are both in 7l: this is impossible because of (i). (2) The value q; is in 7" and a;, ay are in 7%
this is impossible because of the decomposition into subpermutations stated in (ii). (3) The
values a;,aj,ar are all in m®: because of the inequalities 7} < 7f < .-+ < 7l | < 7} and
a;,aj > ay the values a; and a; must be belong to the same subpermutation as ay, i.e., a;, a;, ay

are all in 7TJB for some j € [s], which is impossible because of the 231-avoidance condition stated
in (if). O

The next lemma, illustrated in Figure 25 (a), describes the structure of 7-avoiding signed
permutations. For any string = = (a1, ..., ax) of integers, we define 2’ := (ag,...,a7), i.e., this
operation reverses the string and complements all signs.

Let 7 = (am,...,a1,a1,...,a,) € By,. We define N(7) := {i € [n] | a; < 0} and

o {max N(m) if N(m) #0,

3
0 else. (32)

In words, s, is the largest positive index for which the corresponding entry of 7 is negative, or 0
if no such index exists. Furthermore, we let p, € [1] U [n] be the position of the value 1 in 7.
Lastly, we define

tr = max{sy,pr}. (3b)

Lemma 25. For a signed permutation = = (agm, . ..,aq,a1,...,0,) € By, let s := sy be as defined

n (3a). Define o™ := (as,...,a,a1,...,as), 7% := (ass1,...,a,) and 7 := (agm, . .. ,G5) =

(7Y, and let x4,z 1,...,21 denote the sequence of positive entries of ™ from left to right.
Then 7 = (7%, 7™M, 7R avoids T if and only if the following conditions hold:

(i) We have x4 > x5 1 > --- > x1, i.c., the positive entries of ™ appear in decreasing order.
(ii) There is a decomposition T8 = (rf, 78, ... 78) where 1§ < z1 <7l <@y <7l <. <
Tg—1 < 7T§_1 <xg < 7T;R, such that each of the subpermutations 7['?, 7=0,...,s, avoids 231.

We emphasize that the pattern 231 mentioned in (ii) has no underscore. Note that |7™| = 2s,
and |7R| = |7 = n — s,

Proof. We first assume that = € B,, avoids 7. To prove (i), note that if there are indices ¢ < j
with z; < xj, then x;xjas, = ;7,75 is an occurrence of the pattern 7, a contradiction. To
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FiGure 25. Illustration of the structure of a 7-avoiding signed permutation as
described by (a) Lemma 25 and (b) Lemma 26.

prove (ii), we first establish the following auxiliary claim: For any j € [s], we have that in 7%

all entries smaller than x; are to the left of all entries larger than z;. Indeed, if there is a
J € [s] and indices s + 1 < k < £ < n such that ay > x; > ay, then z;ara, is an occurrence

of 7, a contradiction. This proves the decomposition of 7 into subpermutations 7TJR, 7=0,...,s,

R are positive by definition, any occurrence of 231 would also

claimed in (ii). As all values in 7
be an occurrence of 7, so each of the subpermutations 7TJR, 7 =0,...,s, must avoid 231.

We now assume that m € B, satisfies (i) and (ii). If a;aja, i < j < k, is an occurrence of 7
in 7, then we have ap < a; < a; and a; > 0, so a;,a;,a; are all in ™ or 7®. We only need
to consider three possible cases: (1) The values a; and a; are both in 7™: this is impossible
because of (i). (2) The value a; is in 7 and a;, a; are in 7%: this is impossible because of the
decomposition into subpermutations stated in (ii). (3) The values a;, a;, ay, are all in 7%: because

of the inequalities 7§t < 78 < 7l < ... < 7R | <7l and a;,a; > a; the values a; and a; must

belong to the same subpermutation as ax, i.e., a;,a;,a are all in 7er for some 7 € {0,...,s},
which is impossible because of the 231-avoidance condition stated in (ii). O

We also need the following alternative structural description of 7-avoiding signed permutations;
see Figure 25 (b).

Lemma 26. For a signed permutation 7 = (am,...,a7,01,...,an) € By, let s 1= sz, p := px
and t :=t, be as defined in (3). Define ™ = (az,...,a7,a1,...,at), 7™ = (azy1,...,a,) and
= (am, ..., ay) = (7R and let x4, 241, ..., 21 denote the sequence of positive entries of ™

from left to right. Then © = (7%, 7™, 7R) avoids T if and only if the following conditions hold:

(i) We have x4 > x4_1 > --- > x1 = 1, i.e., the positive entries of ™ appear in decreasing
order, ending with 1.
(ii) In the decomposition 2% = (7}, ... . 78) where 21 <Al <my <7l < <2y 1 <7l <

xy < T, each of the subpermutations 77}3, J € [t], avoids 231.

By Lemma 26, a 7-avoiding signed permutation 7 can be viewed as a 231-avoiding permuta-
tion o (recall Lemma 24), combined with the reversed and complemented permutation ¢’ such
that the positive values to the left and including 1 of o and their negated counterparts in ¢’ are
interleaved arbitrarily (in a symmetric way).
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Proof. Note that the value 1 is always in 7™, because the positive values of 7 are all in either 7™

or 7% and if the value 1 were in 7%, then we would have s > ¢, a contradiction to the
definition (3b).

If s > p, then the claims of the lemma are identical to Lemma 25. On the other hand,
if s < p, then we apply Lemma 25 to obtain a decomposition 7 = (7%, 7™M 7R") with
R = (W(P){*,WR*, . ,7r§*), and we then apply Lemma 24 to further decompose Trg‘*, yielding a
decomposition that has the desired properties. O

We note that [7M| = ¢, and |7%| = |7¥| = n — t,. Furthermore, as the value 1 belongs to 7

we have 7™ £ ¢.

For m € B,(7), we refer to (7%, 7™M, 7®) and 7% = (#},...,7}) as given by Lemma 26 as
staircase decomposition of m, and to the sequence z; > --- > x1 as staircase values. Note that
the length of 7™ is 2¢ and the length of 7% and 7 is n — .

From Lemma 26, we can directly deduce the following structure of minimal jumps inside a
T-avoiding signed permutation; see Figure 27.

Lemma 27. Let 7 = (ag,...,an) € Bp(7), and consider its staircase decomposition ™ =
(7b, 7™M 7R and 7R = (7}, ..., 7}) with staircase values xy > --- > x1, as given by Lemma 26.
A minimal jump of a value a; > 0 in 7 is exactly one of the following:

M

(i) If a; is in ©™ and its neighboring entry b in ™ is negative (either b = a;_1 or b = a;y1), it

is an adjacent transposition a; < b within 7.
i) If a; is in ™ and ai41 > 0, i.e., a; = x; for some j € [t], then it is a right jump ending
+ J
directly to the left of 7TJR.
i) If a; is the leftmost entry of ™ for some j € [t], then it is a left jump ending directly to the
J
left of x;.
w) If a; is in T for some j € [s], then it is a jump within the subpermutation ©f that is
J J
minimal w.r.t. avoidance of the pattern 231.

Note that left and right jumps as in (i) are inverse to each other, and the same is true for left
and right jumps as in (iv). On the other hand, right jumps as in (ii) are the inverse of the left
jumps in (iii). We refer to a minimal jump as in (i) or (iv) as a close minimal jump, and to a
jump as in (ii) or (iii) as a far minimal jump. Note that close minimal jumps do not change the
lengths of the three parts of the staircase decomposition, whereas a far jump either decreases or
increases (in case (ii) and (iii), respectively) the length of the middle part 7 by 2.

For a signed permutation m € B,,_1(7), it is easy to see (using Lemma 26) that ¢, (7) € By, (1),
i.e., inserting n at the rightmost position and 7 at the leftmost position yields again a permutation
that avoids 7. A similar statement is false for ¢z (m), which prevents By, (7) from being a zigzag
language. For example, for m = 2112 € By(7) we have c5(m) = 321123, and the substring 123 is
an occurrence of 7.

The following lemma describes the leftmost possible position to insert the value n into a
T-avoiding signed permutation m € B,,_1(7), so that the resulting signed permutation is again
T-avoiding. Furthermore, importantly for Algorithm J, minimal jumps are preserved under such
insertions.

Lemma 28. Let m € B,_1(7), let t := t; be as defined in (3), and consider the staircase
decomposition m = (7, 7™, 7R) as given by Lemma 26. Then the smallest integer i € [m] U [n]

such that ¢;(m) avoids T equals i =t + 1, i.e., we have 0 := c(m) = (7%, n, ™ 7, mR) € B, (7).

Furthermore, the staircase decomposition of o is (o%, o™, o®) = (z%, (n, 7™, 7)), 7R), and any
minimal jump in 7 is also a minimal jump in o.
Proof. Combine Lemmas 26 and 27. O

We emphasize that a close minimal jump in m with d steps is still a close minimal jump by d
steps in o, whereas a far minimal jump in 7 turns into a far minimal jump by d + 1 steps in o,
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0 =Ts41

C = {703,673,636, 366, 763,073}
X =1{3,6,7}
RM(T) = 763367 X = {3,6,7}

RR(T) = (hE, ... h}) = 124598 ¥ = {1,24,589}
PH(T) = (B(T)) =
h(T) = (W(T), (T, '™(T))
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T 15) I Tg
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FIGURE 26. Definition of the bijection h between symmetric triangulations and
T-avoiding signed permutations. The triangulation is the same as in Figure 23.

because the value 7 is inserted at position ¢ + 1. For example, 7 := 312213 — 1322__1 is a far
minimal left jump of 3 by 4 steps in 7, and we have t; = 2, so 0 := cizq(m) = c3(m) = 34122143,
and o = 34122143 — 41322314 is a far minimal left jump of 3 by 5 steps in o.

5.3.4. A bijection between A} and By(7). The following definitions are illustrated in Figure 26.
Consider a symmetric triangulation 7" € Aj. Let C be the set of triangles in T that
have points on both sides of the line 00. We refer to them as crossing triangles of T'. Let
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FicUure 27. Correspondence between minimal jumps in 7-avoiding signed permuta-
tions as described by Lemma 27 (left) and flips in symmetric triangulations (right)
under the bijection h.

37
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X ={x1 < x9 < --- < x5} be the set of positive vertices of triangles in C, excluding the
vertices zg := 0 and x4 := 0. Note that we have |C| = 2s.

We first define a permutation hM(T') of the integers in X U X as follows. We sweep through
the triangles in C in the order in which they intersect the ray from 0 to 0, starting with the
triangle 2,770 and ending with the triangle O0x1Z;. For every triangle in C, we add one of
its vertices to the string hM(T'), according to the following rule: If the triangle is abc with
a,b € [nfU{0}, b =0o0r a < b, and ¢ € [n], we add the vertex a. If the triangle is abc
with a,b € 7] U{0}, a = 0 or @ < b, and ¢ € [n], we add the vertex b. One can check
that (RM(T)) = h™M(T). Furthermore, if central edge is ua, then u is the smallest/rightmost
positive value in the left half of RM(T'), and % is the largest /leftmost negative value in the right
half of AM(T). In the special case were the central edge is 00, we have hM(T) = ¢.

We now define a permutation h®(T) of the integers in Y := [n] \ X as follows. For j =
0,...,s, we let T; denote the subtriangulation of 1" of non-crossing triangles seen through the
edge z;jzj11. We define h®(T) := (hf, -+ , h}) with h;f{ := ¢(T}), where g is the mapping defined
in Section 5.3.1, and in evaluating ¢(7};) we consider the (sub)triangulation T through the
edge x;z;11. Furthermore, we define h(T) := (h®(T))’, which is a permutation of the integers
inY =[]\ X.

Combining the results from the previous steps, we define h(T) := (h(T), WM (T), hR(T)).
Theorem 29. The mapping h : AY — B,(231) is a bijection thal induces a one-to-one
correspondence between flips in symmetric triangulations and minimal jumps in 231-avoiding
signed permutations.

The theorem shows that the two flip graphs on symmetric triangulations and 7-avoiding
signed permutations are isomorphic. Figure 12 shows the B-associahedron for n = 3, labeled
with the symmetric triangulations and 7-avoiding signed permutations corresponding to each
other under the bijection h.

Proof. The fact that h is a bijection can be verified directly, using Lemmas 23 and 25. The
correspondence between flips and minimal jumps follows from Lemma 27. Specifically, the flips
corresponding to the four different types of jumps (i)—(iv) described in the lemma are illustrated
in Figure 27 (i)—(iv), respectively. O

Theorem 30. Given the set L, = B, (231) and initial permutation my = id,,, Algorithm J visits
every signed permutation from L, exactly once. Furthermore, the last permutation differs from
the first one in a minimal jump.

The resulting orderings of 7-avoiding signed permutations and symmetric triangulations are
shown in Figures 12 and 13 for n = 1,2, 3, 4.

Proof. The proof is a straightforward adaption of the proof of Theorem 17. We use again the
property that if 7 € B,,_1(7), then ¢,(7) € B,(7) and any minimal jump in 7 is also a minimal
jump in ¢, (7). As a similar statement does not hold for ¢z (7), we apply Lemma 28 instead.
Using that | B, (7)| = (2:) is even, an easy induction shows that the last permutation in J(B, (7))
ism---321123 - - n (recall Remark 18), i.e., it differs from the first permutation id,, in a minimal
jump of 1. O
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