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1. Introduction

Figure 1. Hamilton’s Icosian game.

In 1857 the Irish mathematician William Rowan
Hamilton invented a puzzle whose goal is to find a
cycle in the graph of the dodecahedron that visits
every vertex exactly once. He dubbed it the ‘Icosian
game’, as the resulting cycle has exactly twenty (‘i-
cosa’ in ancient Greek) edges and vertices. In honor
of Hamilton, a cycle that visits every vertex of a
graph exactly once is now called a Hamilton cycle.
The dodecahedron has the interesting property that
it looks the same from the point of view of any vertex.
Formally, it is vertex-transitive, i.e., any two vertices
can be mapped onto each other by an automorphism
of the graph. In 1970 Lovász raised a conjecture which can be considered a highly advanced version of
the Icosian game. Specifically, he conjectured that every connected vertex-transitive graph admits a
Hamilton cycle, apart from five exceptional graphs, which are a single edge, the Petersen graph, the
Coxeter graph, and the graphs obtained from the latter two by replacing every vertex by a triangle.
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Figure 2. The Petersen graph as intersection
graph of all 2-element subsets of {1, 2, 3, 4, 5},
with edges connecting disjoint sets. In the
corresponding bitstring representations, 0s are
drawn as white squares and 1s as black squares.

The Petersen graph, shown in Figure 2, is a 10-
vertex graph that serves as a famous example and
counterexample for many problems in graph theory,
and we will encounter it again later in this article.
A variant of Lovász’ conjecture asserts that every
connected vertex-transitive graph admits a Hamilton
path (without exceptions), i.e., we still need to visit
every vertex exactly once, but the first and last
vertex of the tour need not be adjacent. While the
Icosian game is about one particular graph, Lovász’
conjecture talks about infinitely many graphs, which
on the one hand are very constrained, but on the
other hand very hard to get your hands on. One can
easily construct numerous explicit families of vertex-
transitive graphs for which it is not known whether
they are Hamiltonian. An important example for
this are Cayley graphs, which are defined for a group
and a set of generators as the graph that has as
vertices all group elements, and whose edges arise
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by multiplication with a generator. Even for particular groups like the symmetric group, and for
generators with certain properties (like two generators, or generators that are involutions), only partial
results are known.

In this expository article, we consider another rich family of vertex-transitive graphs, which features
prominently throughout combinatorics, namely graphs defined by intersecting set systems. We give
an overview of the many beautiful techniques and ingredients devised during the past 40 years that
establish the existence of Hamilton cycles in those graphs, thus settling interesting special cases of
Lovász’ conjecture. Our discussion starts with the easy instances and ends with the hardest and most
general ones, and it emphasizes the key obstacles on this journey.

1.1. The hypercube. The starting point is the Boolean lattice, i.e., the inclusion order on all subsets
of [n] := {1, 2, . . . , n}; see Figure 3. The cover relations of this poset are pairs of sets X, Y which differ
in a single element, i.e., Y = X ∪ {i} for some i ∈ [n], and the corresponding cover graph Qn is the
well-known n-dimensional hypercube. It is convenient to encode the vertices of Qn as bitstrings of
length n, by considering the characteristic vector of each set, which has the ith bit equal to 1 if and
only if the element i is contained in the set. With this encoding, edges of Qn connect exactly pairs
of vertices that differ in a single bit. This graph is vertex-transitive, and a Hamilton cycle can be
found easily, by applying the following simple greedy rule discovered by Williams: Start at an arbitrary
vertex, and repeatedly flip the rightmost bit that creates a previously unvisited vertex. The resulting
cycle is known as binary reflected Gray code, named after Bell Labs researcher Frank Gray, and it is
shown in Figure 3 for n = 4.
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Figure 3. Left: The 4-dimensional hypercube Q4 and one of its Hamilton cycles, the
binary reflected Gray code (highlighted edges); Right: bitstring representation of the cycle
(0 = white and 1 = black) with vertices in clockwise order starting at 12 o’clock. When
printing the sets, curly brackets and commas are omitted for simplicity.

2. The middle levels conjecture

The kth level of Qn is the set of all vertices with exactly k many 1s. In terms of subsets in the Boolean
lattice, these are the subsets of size exactly k. Now consider the hypercube of odd dimension 2k + 1,
and the subgraph induced by the middle two levels k and k + 1; see Figure 4. We denote this subgraph
by Mk, and we note that it is vertex-transitive. Havel [Hav83] in 1983, and independently Buck and
Wiedemann [BW84] in 1984 conjectured that Mk has a Hamilton cycle for all k ≥ 1, and this problem
became known as middle levels conjecture. It turns out that this problem is considerably harder than
finding a Hamilton cycle in the entire cube. Thus, the conjecture is a prime example of an easy-to-state
combinatorial proposition that one feels should be easy to prove at first sight, but that turns out to be
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surprisingly intricate upon further investigation. Also, it is an explicit instance of Lovász’ conjecture,
and failing to prove it for this particular family of graphs Mk shows how little we understand about
the general problem. Consequently, the middle levels conjecture has attracted a lot of attention in the
literature (see e.g., [KT88, FT95, SW95], and it is mentioned in several popular books, in particular in
Diaconis and Graham’s book ‘Magical mathematics’, and in Winkler’s book ‘Mathematical puzzles: a
connoisseur’s collection’. Furthermore, Knuth gave the middle levels conjecture the highest difficulty
rating (49/50) among all open problems in his book ‘The Art of Computer Programming Vol. 4A’. In a
recent survey, Gowers comments on the conjecture as follows:

‘If one starts trying to build a Hamilton cycle in Mk, one runs into the problem of having too
much choice and no obvious way of making it. (A natural thing to try to do is find some sort of
inductive construction, but a lot of people have tried very hard to do this, with no success—a
natural pattern just doesn’t seem to emerge after the first few small cases.)’

2.1. Kierstead-Trotter matchings. A matching in a graph is a set of pairwise disjoint edges, and
a matching is perfect if it includes every vertex. Kierstead and Trotter [KT88] in 1988 suggested to
tackle the middle levels conjecture by taking the union of two edge-disjoint perfect matchings in Mk,
with the hope that their union forms the desired Hamilton cycle.
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Figure 4. Top: The middle levels graph M2 and
the perfect matchings Xf and Xg (red and blue,
respectively) whose union is a Hamilton cycle;
Bottom: bitstring representation of the cycle.

The two matchings they considered can be de-
scribed explicitly as follows: We write Ak and Bk

for the vertices in levels k and k + 1 of Q2k+1,
respectively, i.e., these are the two partition class-
es of Mk. A Dyck word is a bitstring with the
same number of 1s and 0s and the property that
every prefix contains at least as many 1s as 0s.
We write Dk for the set of all Dyck words of
length 2k. Furthermore, for any string x and any
integer i, we write σi(x) for the cyclic left shift
of x by i steps. Note that every vertex x ∈ Ak

can be written uniquely as x = σi(y 0) for some
y ∈ Dk and 0 ≤ i < 2k + 1. Indeed, the count-
ing works out correctly, as the number of Dy-
ck words is the Catalan number Ck = |Dk| =

1
k+1

(2k
k

)
, the number of cyclic shifts is 2k + 1, and

(2k + 1) · Ck =
(2k+1

k

)
= |Ak|. We then define

f(x) := σi(y 1) ∈ Bk. Furthermore, we decom-
pose y uniquely as y = 1 u 0 v for uv ∈ Dk−1, and
we define g(x) := σi(1 u 1 v 0) ∈ Bk. It is easy
to show that f and g are bijections between Ak

and Bk, and therefore Xf := {(x, f(x)) | x ∈ Ak}
and Xg := {(x, g(x)) | x ∈ Ak} are two edge-
disjoint perfect matchings between the two par-
tition classes Ak and Bk of Mk. The union of Xf

and Xg thus forms a cycle factor Fk := Xf ∪ Xg in the graph Mk, i.e., a collection of disjoint cycles
that together visit all vertices. In fact, for k = 2 we are lucky and Fk is a single cycle, i.e., a Hamilton
cycle in Mk; see Figure 4. Unfortunately, our luck ends for larger values of k, as the number of cycles
of Fk for k = 1, 2, . . . is 1, 1, 2, 3, 6, 14, 34, 95, 280, 854, . . ..

2.2. Interpretation of the cycles as plane trees. The middle levels conjecture was finally solved
by Mütze [Müt16] in 2016, who later provided a 2-page proof [Müt23a]. The short proof picks up on
Kierstead and Trotter’s argument as follows: The counting sequence for the number of cycles of Fk is
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OEIS sequence A002995, which counts plane trees with k edges, hinting at a bijection between plane
trees with k edges and cycles in Fk; see Figure 8.

x = 11001110100100
root

Figure 5. Bijection between Dyck words (left), Dyck paths
(middle) and ordered rooted trees (right). Our trees have the
root (red) at the bottom and grow upwards.

Indeed, this bijection follows from
the definition of f and g, and it al-
so uses the following well-known bi-
jection between Dyck paths with 2k

steps and ordered rooted trees with
k edges; see Figure 5: Given a Dyck
word x, we consider the correspond-
ing Dyck path, which has an ↗-step
for every 1-bit and a ↘-step for every 0-bit of x. We then squeeze this Dyck path together, gluing
every pair of an ↗-step and ↘-step on the same height that ‘see’ each other (i.e., that have no other
step at the same height in between them) together to form an edge of the ordered rooted tree.
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f g

x = σi(u 1 v 0 0)

f(x) = σi(u 1 v 0 1)

x′ = g−1(f(x))

y
u

vu
v
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= σi+1(1u 0 v 0)

y′

tree rotation

Figure 6. Two steps along a cycle of Fk

correspond to a tree rotation and cyclic
left shift.

For a vertex x ∈ Ak, we consider the vertex x′ ∈ Ak

that is two steps away along a cycle of Fk, i.e., x′ is ob-
tained by traversing one edge of Xf and one edge of Xg,
so x′ = g−1(f(x)). Specifically, for x = σi(u 1 v 0 0) ∈ Ak

with uv ∈ Dk−1 and 0 ≤ i < 2k + 1 we have x′ :=
g−1(f(x)) = σi(u 0 v 0 1) = σi+1(1 u 0 v 0). We now define
y := u 1 v 0 ∈ Dk and y′ := 1 u 0 v ∈ Dk, and we consider
the ordered rooted trees corresponding to the Dyck word-
s y and y′, which differ in a tree rotation. Consequently,
walking two steps along a cycle of Fk corresponds to a
tree rotation and a cyclic left shift of the bitstring. As
2k + 1 (the number of shifts) and k (the number of tree
edges) are coprime, all cyclic shifts of every tree lie on the
same cycle. As the equivalence classes of ordered rooted
trees under tree rotation are precisely plane trees, obtained by ‘forgetting’ the root, we obtain the
desired bijection. Now that we have a nice combinatorial interpretation of the cycles in the factor Fk,
all that is left to do is to join the cycles to a single Hamilton cycle.

H

H

(a)

(b)

(C1 ∪ C2)△H

(C1 ∪ C2)△H

C1

C1

C2

C2

Figure 7. Gluing cycles (red) join cycles
from the cycle factor (black).

2.3. Gluing cycles. The proof proceeds by gluing the
cycles of the factor Fk together via small gluing cycles.
Given a cycle factor in a graph, a gluing cycle H for a
set C1, . . . , Cℓ of cycles from the factor has every second
edge in common with one of the cycles Ci, in such a
way that the symmetric difference of the edge sets of
(C1∪· · ·∪Cℓ)△H is a single cycle on the same vertex set
as C1, . . . , Cℓ. In the simplest case ℓ = 2 the cycle H is
a 4-cycle that joins two cycles C1, C2 as in Figure 7 (a).
Unfortunately, the middle levels graph Mk has no 4-
cycles at all. However, we can use a 6-cycle H that
intersects C1, C2 as shown in Figure 7 (b), and obtain
the same effect.

As it turns out, there is a large collection of such gluing 6-cycles for the factor Fk, and all these
gluing cycles are edge-disjoint, i.e., the gluing operations do not interfere with each other. Furthermore,
each gluing cycle that joins cycles C1 and C2 corresponds to a local modification of the plane trees
associated with C1 and C2, which consists in removing a leaf from the plane tree, and reattaching it to
a neighboring vertex. We can thus define an auxiliary graph Hk which has as nodes all plane trees
with k edges, corresponding to the cycles of the factor Fk, and which has edges between pairs of plane
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trees that differ in such a local modification, corresponding to gluing cycles; see Figure 8. It remains
to show that the auxiliary graph Hk is connected, which is done by showing that every plane tree can
be transformed into a star by a sequence of local modifications as described before.

Figure 8. Auxiliary graph Hk on plane
trees with k = 6 edges.

We thus reduced the problem of proving that Mk has
a Hamilton cycle to proving that the auxiliary graph Hk

is connected, which is much easier, as nodes and edges
of Hk have a nice combinatorial interpretation. This
two-step approach of building a Hamilton cycle (cycle
factor+gluing) and the corresponding reduction to a
spanning tree problem is very powerful, and has been
employed also in several of the proofs discussed later.

3. Bipartite Kneser graphs

For integers k ≥ 1 and n ≥ 2k + 1, the bipartite
Kneser graph Hn,k has as vertices all k-element and
(n − k)-element subsets of [n], and an edge between any
two subsets X and Y with X ⊆ Y . The bipartite Kneser
graph Hn,k is the cover graph of the subposet of the
Boolean lattice of [n] induced by the levels k and n −
k. In particular, H2k+1,k = Mk is the middle levels
graph, i.e., bipartite Kneser graphs generalize the middle
levels graphs. Furthermore, bipartite Kneser graphs are
vertex-transitive, which makes them interesting test
cases for Lovász’ conjecture. Simpson [Sim91] and independently Roth conjectured in 1991 that all
bipartite Kneser graphs admit a Hamilton cycle. Note that the degrees of Hn,k are large when n is
large w.r.t. k, i.e., intuitively, the middle levels case n = 2k + 1 is the sparsest and hardest one, whereas
the denser cases n > 2k + 1 should be easier to prove. The densest graph Hn,1 is the cover graph of
what poset theorists call the ‘standard example’, namely a complete bipartite graph minus a perfect
matching. Indeed, there has been considerable work on establishing that sufficiently dense bipartite
Kneser graphs Hn,k have a Hamilton cycle. Once the sparsest case n = 2k + 1 was established with
the proof of the middle levels conjecture, the Hamiltonicity of all Hn,k was shown shortly thereafter
by Mütze and Su [MS17] in 2017. In fact, their proof is a 5-page inductive argument, which uses the
sparsest case n = 2k + 1 as a basis.

Cn,k
k

k + 1

n− k

Qn

Pn,k

Figure 9. Structures in Qn used for the
proof that Hn,k has a Hamilton cycle.

3.1. Havel’s construction and its subsequent re-
finement. We write Qn,k for the subgraph of the hy-
percube Qn induced by levels k and k + 1. Already
Havel [Hav83] in his 1983 paper considered the follow-
ing strengthening of the middle levels conjecture: For
any k ≥ 1 and n ≥ 2k + 1, there is a cycle Cn,k in Qn,k

that visits all vertices in level k, i.e., in the smaller of
the two partition classes, shown in red in Figure 9. For
n = 2k + 1 both partition classes have the same size and
Cn,k is a Hamilton cycle in Mk, i.e., this statement is the
middle levels conjecture. For n > 2k +1 Havel proved this
statement by an easy induction: Indeed, we can split Qn,k

into two subgraphs Qn−1,k and Qn−1,k−1, by partitioning
all vertices according to the value of the last bit. Using
induction, we can glue together the two cycles Cn−1,k
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and Cn−1,k−1 to obtain Cn,k. Note that this approach fails for n = 2k + 1, as in this case Qn−1,k lies
above the middle and Qn−1,k−1 lies below the middle, so the size difference between lower or upper
level is opposite in both parts.

(a1) (a2) (a3) (a4) (b1) (b2) (b3) (b4)

Figure 10. Hamilton cycles in (a1)–
(a4) bipartite Kneser graphs H9,k, for k =
1, 2, 3, 4; and (b1)–(b4) Kneser graphs K9,k,
for k = 1, 2, 3, 4. Vertices are in their
bitstring representation (0 = white and
1 = black).

The method of Mütze and Su extends Havel’s idea
as follows: In addition to the cycle Cn,k in Qn,k, we
maintain a set of vertex-disjoint paths Pn,k in Qn, shown
in blue in Figure 9, each of which starts at a vertex
of Cn,k in level k + 1 and ends at a vertex in level n − k,
and visits only one vertex of each level in between. The
number of such paths equals the number of vertices in
levels k or n − k, namely

(n
k

)
=

( n
n−k

)
, i.e., these paths

visit all vertices in level n − k, but they skip vertices
in the levels below that. For n = 2k + 1 the paths Pn,k

have no edges, so this strengthening is again the middle
levels conjecture. For n > 2k + 1 the cycles Cn,k and
paths Pn,k can be constructed following a very similar
inductive approach as before, by partitioning vertices
according to the last bit and gluing together two copies
of the structures obtained by induction.

From the cycle Cn,k and the paths Pn,k we construct
a Hamilton cycle in Hn,k as follows: We replace each of
the vertices of the cycle Cn,k in level k + 1, which is the
starting vertex of some path from Pn,k, by the other
end vertex of this path in level n−k. This gives a cyclic
sequence in which all vertices in level k are interleaved
with all vertices in level n − k, with the additional prop-
erty that the predecessor and successor of any level-k
vertex are reachable from it by a path in Qn that moves
up from level k to level n − k. As moving up along a
path in Qn corresponds to moving to a superset, this
sequence is indeed a Hamilton cycle in Hn,k. This cycle
has the remarkable additional closeness property that
any two consecutive k-sets differ only in the exchange
of a single element (as they have a common neighbor
in level k + 1). This construction is illustrated in Fig-
ure 10 (a1)–(a4) for the cases n = 9 and k = 1, . . . , 4
(k = 4 is a solution to the middle levels conjecture).

4. Kneser graphs

For integers k ≥ 1 and n ≥ 2k + 1, the Kneser
graph Kn,k has as vertices all k-element subset of [n],
and edges between any two disjoint sets. Kneser graphs
have many interesting properties, for example, their
chromatic number was shown to be n−2k +2 by Lovász
using topological methods, and their independence num-
ber is

(n−1
k−1

)
by the famous Erdős-Ko-Rado theorem.

Kneser graphs are clearly vertex-transitive, and Hn,k

is the bipartite double cover of Kn,k, i.e., we take two
copies of Kn,k and replace every corresponding pair
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of edges inside the copies by the two ‘diagonal’ cross edges between them. Consequently, if Kn,k

admits a Hamilton cycle, then Hn,k admits a Hamilton path or cycle. Indeed, given a Hamilton
cycle C = (X1, . . . , Xℓ) in Kn,k, where ℓ =

(n
k

)
, we define Xi := [n] \ Xi, and we consider the two

sequences P := (X1, X2, X3, X4, . . .) and P ′ := (X1, X2, X3, X4, . . .), both of length ℓ, obtained by
complementing every even- or odd-indexed set in C, respectively. The last entries of P and P ′ are
Xℓ and Xℓ, respectively, if ℓ is odd, and vice versa if ℓ is even. Furthermore, as Xi ∩ Xi+1 = ∅ we
have Xi ⊆ Xi+1 and Xi ⊇ Xi+1, so P and P ′ are paths in Hn,k. Furthermore, if ℓ is odd, then their
concatenation PP ′ is a Hamilton cycle in Hn,k. On the other hand, if ℓ is even, then the two end
vertices of P are adjacent and the two end vertices of P ′ are adjacent, so these two disjoint cycles
in Hn,k can be joined to a Hamilton path.

The sparsest Kneser graphs are obtained when n = 2k + 1, and they are also known as odd
graphs Ok := K2k+1,k. The odd graph O2 = K5,2 is the Petersen graph shown in Figure 2, which does
not have a Hamilton cycle, but only a Hamilton path. The graph O3 = K7,3 is shown in Figure 13. The
conjecture that Ok for k ≥ 3 has a Hamilton cycle was raised in the 1970s, even before the middle levels
conjecture, in papers by Meredith and Lloyd [ML73], and by Biggs [Big79]. By our earlier observation,
the Hamiltonicity of Kn,k implies it for Hn,k. In particular, Hamiltonicity of the odd graphs implies
the middle levels conjecture. Consequently, Kneser graphs attracted a lot of attention, and there was a
long line of research on proving that sufficiently dense Kneser graphs Kn,k, i.e., those where n is large
w.r.t. k, admit a Hamilton cycle.

4.1. The Chen-Füredi construction via Baranyai’s partition theorem. In 2002, Chen and
Füredi [CF02] found a particularly nice proof that Kn,k has a Hamilton cycle when n = pk for some
integer p ≥ 3. The first ingredient of their proof is Baranyai’s partition theorem, which states that
the

(n
k

)
vertices of the Kneser graph can be partitioned into

(n
k

)
/p groups of size p such that the

vertices in each group are a partition of [n], i.e., they are pairwise disjoint and together cover [n]. The
second ingredient is a method to list all k-element subset of [n] in such a way that any two consecutive
sets X, Y differ in an element exchange, i.e., Y = (X \ {i}) ∪ {j} for some i, j ∈ [n]. It is well known
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(a) (b)

Figure 11. (a) Exchange Gray code for 2-element subsets of [8] obtained by restricting the
binary reflected Gray code in Q8 to level 2; (b) Hamilton cycle in K9,3 via the Chen-Füredi
construction. Each indicated triple of vertices is a partition of [9], the first two are colored
gray, and the last one is colored black and corresponds to the set from (a) by adding the
last element (extra outermost black bit).
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that such a listing can be obtained from the binary reflected Gray code for Qn by restricting it to the
vertices in level k, i.e., we simply delete from the full listing all vertices not in level k; see Figure 11 (a).

To prove that Kn,k with n = pk and p ≥ 3 has a Hamilton cycle, Chen and Füredi first apply
Baranyai’s theorem, which partitions all vertices of Kn,k into ℓ :=

(n
k

)
/p groups of size p, such that

each group is a partition of [n]. Let Xi
1, . . . , Xi

p be the sets in the ith group, for every i ∈ [ℓ]. Each
of those groups forms a clique in the Kneser graph, i.e., it can be traversed in any order. Without
loss of generality we may assume that n ∈ Xi

p, i.e., the element n is contained in the last set of each
group. Furthermore, by the aforementioned Gray code result, we can assume that X1

p , X2
p , . . . , Xℓ

p are
ordered so that any two consecutive sets differ in an element exchange, i.e., X1

p \ {n}, . . . , Xℓ
p \ {n}

forms an exchange Gray code for all (k − 1)-element subsets of [n − 1]. Let xi ∈ [n] be the element
in Xi

p that is not contained in Xi+1
p (the indices i are considered modulo ℓ). We may also assume that

Xi+1
1 does not contain xi, otherwise the sets Xi+1

1 , . . . , Xi+1
p−1 can be reordered appropriately, which

is possible as there are at least p − 1 ≥ 2 of them. It follows that Xi
p ∩ Xi+1

1 = ∅ and consequently,
X1

1 , . . . , X1
p , X2

1 , . . . , X2
p , . . . , Xℓ

1, . . . , Xℓ
p is the desired Hamilton cycle in Kn,k; see Figure 11 (b). The

method via Baranyai partitions was later refined by Chen [Che00] to establish Hamiltonicity of all Kn,k

with n ≥ 2.62k + 1.

4.2. Settling the odd graphs via a Chung-Feller bijection. In 2021, Mütze, Nummenpalo, and
Walczak [MNW21] proved that the sparsest Kneser graphs, namely the odd graphs Ok for all k ≥ 3
have a Hamilton cycle. The starting point of their proof is the well-known Chung-Feller theorem. A
flaw in a bitstring x is a prefix of x ending with 0 that has strictly less 1s than 0s; flaws are drawn
as red steps in Figure 12. We write Lk for the unique middle level k of Q2k, i.e., all bitstrings of
length 2k with exactly k many 1s, and we partition Lk into sets Le

k for e = 0, . . . , k according to the
number e of flaws. In particular, L0

k = Dk are Dyck words, and Lk
k are complemented Dyck words. The

Chung-Feller theorem asserts that |L0
k| = |L1

k| = · · · = |Lk
k| = 1

k+1
(2k

k

)
= Ck, i.e., the number of strings

is the same independently of the number of flaws, and it is the kth Catalan number. It is not hard to
prove this by establishing a bijection f : Le

k → Le+1
k . In 2018, Mütze, Standke and Wiechert presented

a new proof, using a bijection f that has the following additional properties; see Figure 12: f only
transposes two bits (0 and 1), for any x ∈ Lk we have that fk(x) is the complement of x, i.e., every bit is
transposed (and thus complemented) exactly once when applying the bijection k times, and the unique
neighbors x̂ := x ∪ f(x) of x and f(x) in level k + 1 of Q2k for x ∈ Lk are all distinct and together cover
precisely this level. We can thus build vertex-disjoint paths (x, x̂, f(x), f̂(x), f2(x), f̂2(x), . . . , fk(x)),
all of length 2k, that together cover Q2k,k and that connect pairs of Dyck words and their complements
(the length of each path is the number of its edges, which is one less than the number of vertices).
Appending a 0-bit to all vertices and taking complements of the resulting vertices in level k + 1 yields
a cycle factor in Ok which has Ck many cycles of the same length 2k + 1; see Figure 13.

The proof of Mütze, Nummenpalo, and Walczak is completed by gluing the cycles of this factor
together via 6-cycles and 8-cycles, which glue together 3 or 4 cycles, respectively, from the factor at a
time. The main technical difficulty is that the corresponding auxiliary graph is now a hypergraph with
hyperedges of cardinality 3 or 4, respectively; see the bottom right of Figure 13 (only 3-hyperedges
are present in the figure). To obtain a Hamilton cycle in Ok, we seek a so-called loose spanning tree
in the auxiliary hypergraph, i.e., a spanning tree in which any two hyperedges overlap at most in a
singleton. For this it is not enough to prove that the hypergraph is connected, as there are connected
hypergraphs that do not admit any loose spanning tree. Instead the paper constructs one particular
loose spanning tree. The resulting Hamilton cycle in O4 is shown in Figure 10 (b4).

4.3. Johnson’s inductive construction. In 2011, Johnson [Joh11] devised an inductive construction
for Hamilton cycles in Kneser graphs. Specifically, he showed that Kn,k for n = 2k + s with even s

has a Hamilton cycle provided that the smaller Kneser graphs K2ℓ+s/2,ℓ have a Hamilton cycle for all
1 ≤ ℓ ≤ ⌊k/2⌋ (or they are the Petersen graph K5,2).
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Figure 12. Proof of the Chung-Feller theorem for k = 3 via the minimum change
bijection f . The two transposed bits are highlighted by vertical bars. Each column
produces one of the five cycles of the factor in O3 shown in Figure 13.
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Figure 13. Cycle factor in O3 obtained from the bijection f in Figure 12, and correspond-
ing gluing cycles to turn it into a Hamilton cycle.

His construction works for a ground set of even cardinality n = 2k + s by partitioning it into fixed
pairs {2i−1, 2i} for i = 1, . . . , n/2, and by considering the possible intersection patterns of subsets with
those pairs. Specifically, we associate a set X ⊆ [n] with a tuple (X(1), . . . , X(n/2)) ∈ {−1, 0, 1, 2}n/2

by defining X(i) := 0, −1, 1, or 2 if X ∩ {2i − 1, 2i} equals ∅, {2i − 1}, {2i}, or {2i − 1, 2i}, respectively.
In the simplest case, the subsets X intersect the pairs in either 0 or 2 elements, i.e., X(i) ∈ {0, 2}
for all i ∈ [n/2]. In this case, for ℓ = k/2 a Hamilton cycle in Kk+s/2,k/2 can be lifted to a cycle
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in Kn,k = K2k+s,k by replacing every element i by the pair {2i − 1, 2i}. More generally, consider
subsets X which intersect all but a fixed set of t pairs in 0 or 2 elements, i.e., X(i) ∈ {−1, 1} for a fixed
t-set of indices i ∈ [n/2]. An edge in Kk+s/2−t,k/2−t/2 together with a t-set in [n/2] lifts to a set of edges
involving subsets which intersect all but this fixed set of t pairs in 0 or 2 elements. For example, we have
many edges (one for each pattern of ±1s) of the form ((0, 0, 2, 0, 2, 2, 0, ±1, ±1), (2, 2, 0, 0, 0, 0, 2, ∓1, ∓1))
in K18,8 that arise from the edge ({3, 5, 6}, {1, 2, 7}) in K7,3 with {8, 9} as the special t-set. Using this
idea, a Hamilton cycle in Kk+s/2−t,k/2−t/2 lifts to a cycle (possibly of double the length) consisting of
sets of this type in Kn,k. With some care, one can join together these cycles corresponding to different
t-sets, and then for different values of t to give a Hamilton cycle in Kn,k.

Combining Johnson’s result with the solution for the sparsest case n = 2k + 1 presented in the
previous section, we obtain that K2k+2a,k has a Hamilton cycle for all k ≥ 3 and a ≥ 0. This settles in
particular the second-sparsest case K2k+2,k.

4.4. Settling the remaining cases via Greene-Kleitman parenthesis matching and gliders.
In 2022, Merino, Mütze, and Namrata [MMN22] proved that Kn,k for n ≥ 2k + 3 has a Hamilton cycle,
which combined with the results from the previous two sections completely settles the problem for
Kneser graphs. Their proof starts with a new cycle factor in Kn,k, which is constructed using the
following simple rule based on parenthesis matching, a technique that was pioneered by Greene and
Kleitman [GK76] in the context of symmetric chain partitions of the Boolean lattice: We consider
vertices of Kn,k as bitstrings, and we interpret the 1s in x as opening brackets and the 0s as closing
brackets, and we match closest pairs of opening and closing brackets in the natural way, which will leave
some 0s unmatched. This matching is done cyclically across the boundary of x, i.e., x is considered as a
cyclic string. We write f(x) for the vertex obtained from x by complementing all matched bits, leaving
the unmatched bits unchanged. Note that x and f(x) have no 1s at the same positions, implying
that (x, f(x)) is an edge in the Kneser graph. Furthermore, f is invertible and and f2(x) ̸= x, so the
union of all edges (x, f(x)) is a collection of disjoint cycles that together visit all vertices of Kn,k; see
Figure 14.

The next step is to understand the structure of the cycles generated by f . Interestingly, the evolution
of a bitstring x under repeated applications of f can be described by a kinetic system of multiple
gliders that move at different speeds and that interact over time, somewhat reminiscent of the gliders
in Conway’s Game of Life. Specifically, each application of f is viewed as one unit of time moving
forward. Furthermore, we partition the matched bits of x into groups, and each of these groups is
called a glider. A glider has a speed associated to it, which is given by the number of 1s in its group.
For example, in the cycle shown in Figure 14 (a), there is a single matched 1 and the corresponding
matched 0, and together these two bits form a glider of speed 1 that moves one step to the right
in every time step. Applying f means going down to the next row in the picture, so the time axis
points downwards. Similarly, in Figure 14 (b), there are two matched 1s and the corresponding two
matched 0s, and together these four bits form a glider of speed 2 that moves two steps to the right in
every time step. As we see from these examples, a single glider of speed v simply moves uniformly,
following the basic physics law

s(t) = s(0) + v · t,

where t is the time (i.e., the number of applications of f) and s(t) is the position of the glider in the
bitstring as a function of time. The position s(t) has to be considered modulo n, as bitstrings are
considered as cyclic strings and the gliders hence wrap around the boundary. The situation gets more
interesting and complicated when gliders of different speeds interact with each other. For example,
in Figure 14 (c), there is one glider of speed 2 and one glider of speed 1. As long as these groups of
bits are separated, each glider moves uniformly as before. However, when the speed 2 glider catches
up with the speed 1 glider, an overtaking occurs. During an overtaking, the faster glider receives a
boost, whereas the slower glider is delayed. This can be captured by augmenting the corresponding
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Figure 14. Cycles in different Kneser graphs Kn,k constructed by parenthesis matching.
The cycles in (a) and (b) are shown completely, whereas in (c) and (d) only the first 15
vertices are shown. When applying parenthesis matching to x, unmatched 0s are printed
as -. The right hand side shows the interpretation of certain groups of bits as gliders, and
their movement over time. Matched bits belonging to the same glider are colored in the
same color, with the opaque filling given to 1-bits, and the transparent filling given to 0-bits.
(a) one glider of speed 1; (b) one glider of speed 2; (c) two gliders with speeds 1 and 2
that participate in an overtaking; (d) three gliders of speeds 1, 2 and 3 that participate in
multiple overtakings. Animations of these examples are available at [Müt23b].
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equations of motion by introducing additional terms, making them non-uniform. In the simplest case
of two gliders of different speeds, the equations become

s1(t) = s1(0) + v1 · t − 2v1c1,2,

s2(t) = s2(0) + v2 · t + 2v1c1,2,

where the subscript 1 stands for the slower glider and the subscript 2 stands for the faster glider, and
the additional variable c1,2 counts the number of overtakings. Note that the terms 2v1c1,2 occur with
opposite signs in both equations, capturing the fact that the faster glider is boosted by the same amount
that the slower glider is delayed. This can be seen as ‘energy conservation’ in the system of gliders. For
more than two gliders, the equations of motion can be generalized accordingly, by introducing additional
overtaking counters between any pair of gliders. From those equations of motions, important properties
of the cycles can be extracted via combinatorial and algebraic arguments. One such property is that
the number of gliders and their speeds are invariant along each cycle. For example, in Figure 14 (d),
every bitstring along this cycle has three gliders of speeds 1, 2 and 3. For the reader’s entertainment,
we programmed an interactive animation of gliders over time, and we encourage experimentation with
this code, which can be found at [Müt23b].

The last step of the proof joins the cycles of this factor via gluing 4-cycles (this is where the
assumption n ≥ 2k + 3 is used). Specifically, the gluing cycles join pairs of cycles whose sets of glider
speeds differ in a small modification, changing the speed of one glider by −1 and the speed of another
by +1. We thus obtain a combinatorial interpretation of the gluings. To prove that all cycles of
the factor can be joined to a single Hamilton cycle, it is argued that all cycles can be joined to one
particular cycle in the factor, by considering the speed sets of gliders as number partitions, and by
arguing that these partitions increase lexicographically along suitable gluings. The Hamilton cycles
in K9,k for k = 1, 2, 3 resulting from this proof are shown in Figure 10 (b1)–(b3).

5. Generalized Johnson graphs

The generalized Johnson graph Jn,k,s has as vertices all k-element subsets of [n], and an edge between
any two sets whose intersection has size exactly s. It is defined for integers k ≥ 1, 0 ≤ s < k and
n ≥ 2k −s+1s=0, where 1s=0 denotes the indicator function that equals 1 if s = 0 and 0 otherwise. For
s = 0 we obtain Kneser graphs (s = 0), and for s = k − 1 we obtain Johnson graphs as special cases. By
taking complements, we see that Jn,k,s is isomorphic to Jn,n−k,n−2k+s. Chen and Lih [CL87] conjectured
in 1987 that all graphs Jn,k,s admit a Hamilton cycle except the Petersen graph J5,2,0 = J5,3,1. This
includes Hamiltonicity of the corresponding bipartite double covers, in particular a solution to the
middle levels conjecture, which was the starting point of this article.

In fact, already Chen and Lih observed that Jn,k,s can be partitioned into two subgraphs isomorphic
to Jn−1,k,s and Jn−1,k−1,s−1 (split vertices according to containment of some fixed element, n say), so
if these two graphs have a Hamilton cycle, then we can glue them via a 4-cycle and obtain a Hamilton
cycle in Jn,k,s. To complete the proof, it remains to observe that if Jn,k,s is a generalized Johnson
graph, then either it is a Kneser graph, or Jn−1,k,s and Jn−1,k−1,s−1 are both generalized Johnson
graphs. Using the results for Kneser graphs from the previous section we thus obtain Hamiltonicity for
all generalized Johnson graphs by induction.

There is another closely related and heavily studied class of vertex-transitive graphs called generalized
Kneser graphs Kn,k,s. This graph has as vertices all k-element subsets of [n], and an edge between any
two sets whose intersection has size at most s. Clearly, Jn,k,s is a spanning subgraph of Kn,k,s, so the
Hamiltonicity of Kn,k,s is immediate.

6. What’s next?

Generalized Johnson graphs are the most general family of graphs defined by intersecting set systems
and thus a natural end to our story. With regards to Lovász’ conjecture, many other families of
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vertex-transitive graphs await to be tested for Hamiltonicity, in particular Cayley graphs. We may also
ask how many distinct Hamilton cycles a vertex-transitive graph admits. In fact, the proofs via gluings
of cycle factors for the middle levels graph Mk and for the odd graph Ok discussed in this article yield
double-exponentially (in k) many distinct Hamilton cycles, and the trivial upper bound of n! for the
number of Hamilton cycles of an n-vertex graphs also yields a double-exponential function in k. A
much harder problem is to find multiple edge-disjoint Hamilton cycles. Biggs [Big79] conjectured that
the odd graph Ok can be partitioned into ⌊(k + 1)/2⌋ edge-disjoint Hamilton cycle for k ≥ 3. We do
not even know two edge-disjoint Hamilton cycles in the middle levels graph Mk. Katona conjectured
that the Kneser graph Kn,k contains the rth power of a Hamilton cycle, where r := ⌊n/k⌋ − 2, and
this may even be true for r := ⌈n/k⌉ − 2. Also, for the graphs considered in this article, we may ask
whether they are Hamilton-connected, i.e., they admit a Hamilton path between any two prescribed
end vertices. For bipartite graphs, we may ask whether they are Hamilton-laceable, i.e., they admit a
Hamilton path between any two prescribed end vertices, one from each partition class. In fact, the
middle levels graph Mk for k ≥ 2 was shown to be Hamilton-laceable. Another generalization is to
consider the cycle spectrum, which is the set of all possible cycle lengths in a graph. For example, does
the middle levels graph Mk admit cycles of all possible even lengths starting from 6 up to the number
of vertices?

From an algorithmic point of view, one may ask which of the cycles described in this article can
be computed efficiently? A satisfactory answer to this question is only known for the middle levels
graph Mk, while all the other known constructions present fundamental obstacles to such algorithms.
Furthermore, what about simple descriptions of Hamilton cycles, similar in flavor to Williams’ greedy
description of the binary reflected Gray code mentioned in Section 1.1? Even the simplest known
solution of the middle levels conjecture is much more complicated than this.

There are many other intriguing problems about the interaction of different structures, such as
matchings and cycles, in vertex-transitive graphs. For example, Ruskey and Savage asked whether every
matching in the hypercube can be extended to a Hamilton cycle. For the case of perfect matchings
this was answered affirmatively by Fink [Fin07]. Also, Kotzig’s question on perfect 1-factorizations of
the complete graph comes to mind naturally. A perfect 1-factorization is a decomposition of the edge
set of a graph into perfect matchings, such that the union of any two of them forms a Hamilton cycle.
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